

DOE Merit Review

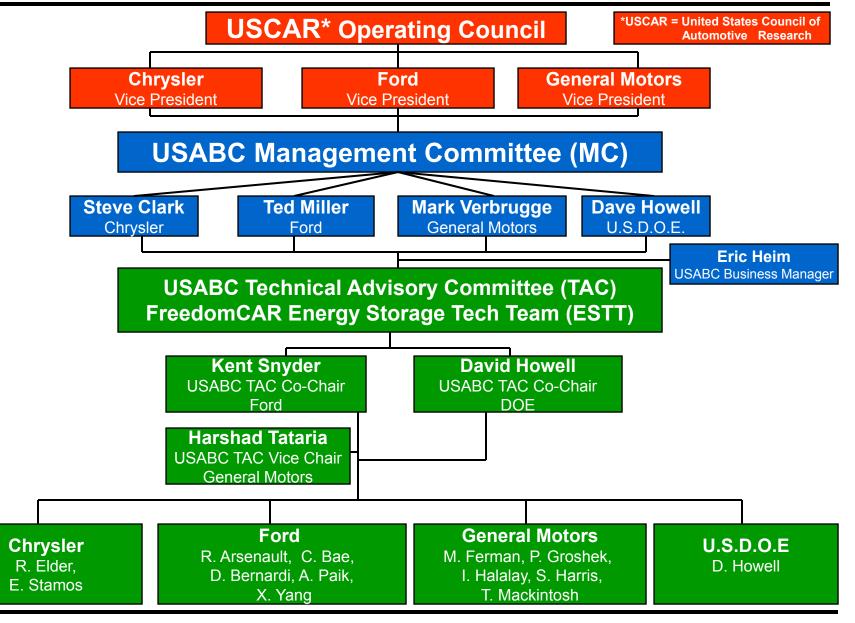
United States Advanced Battery Consortium (USABC)

Kent Snyder Ford Motor Company May 19, 2009

Project ID: es_03_snyder

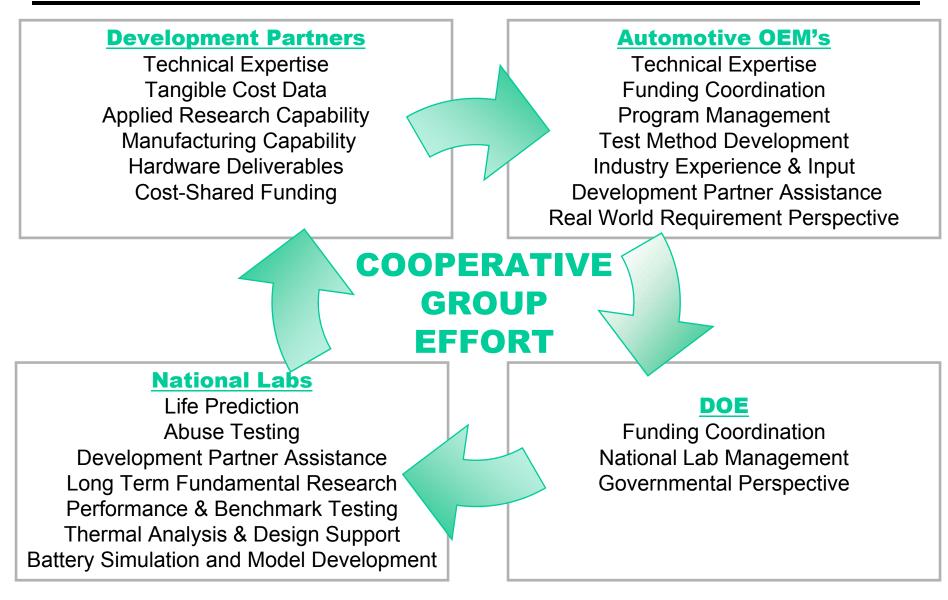
This presentation does not contain any proprietary, confidential, or otherwise restricted information

- Mission
- Organization
- Group Contributions
- Program Goals
- Technology Focus
- Program Activities
- Requirements
- Current Programs
- Program Success & Accomplishments
- Program Focus Trends
- Technology Status
- Challenges



- The United States Advanced Battery Consortium (USABC), comprised of Chrysler, Ford, and General Motors, funds pre-competitive electrochemical energy storage R&D
- Funding for development activity occurs through a cooperative agreement between USABC and DOE.
- This cooperation allows for the combined technical and financial resources of the DOE, OEM automakers, development partners, and U.S. National laboratories in jointly conducting advanced battery research and development.

Organization



USABC Kent Snyder, May 19th, 2009

Group Contributions

- Research and develop electrochemical energy storage technologies for <u>hybrid</u> and <u>electric</u> vehicles:
 - Electrochemical energy storage with 15-year life for:
 - HEV Example: 300 Wh of usable energy with discharge power capability of ≥ 25 kW (10 sec) at a cost of ≤ \$20/kW
 - PHEV Example: 3.4 kWh of usable energy (or 10 miles AER) with discharge power capability of ≥ 45 kW (10 sec) at a cost of ≤ \$500/kWh (or \$1700/pack) by 2015
- Goals are intended to represent values which would be competitive with ICE vehicles on a cost and performance basis.

Technology Focus

Lithium ion batteries

Why Li-lon?

....can provide hybrid & EV applications with:

- Higher energy density (lighter and smaller)
- Inherently higher system energy efficiency
- Inherently lower heat generation
- Lower long-term cost
- Greater basic battery chemistry market longevity expected
- Lower self-discharge rates
- Greater pool of potentially viable suppliers from a preexisting industry

Development Activities

Activity Focus

- Develop electrochemical energy storage devices towards USABC goals through cost-shared projects with industry.
 - □ All USABC subcontracts are at least 50% cost-shared with developers.
- Develop electrochemical energy storage performance and cost requirements for hybrid and electric vehicle applications
- Develop test procedures for hybrid and electric vehicle electrochemical energy storage devices
- USABC deliverables tested and analyzed against performance targets using standardized test procedures
 - Performance and benchmark testing at ANL and INL
 - Abuse Testing at SNL
 - Thermal analysis and design support at NREL
 - Battery simulation and modeling support at ANL and NREL in collaboration with VSATT

Targets for Power Assist HEV Electrochemical Energy Storage Systems

USABC Goals for HEV Power Assist Battery Systems

Characteristics	Unit	HEV Power Assist Maximum	HEV Power Assist Minimum
		USABC Goal	USABC Goal
10s Discharge Pulse Power	kW	40	25
10s Regen Pulse Power	кW	35	20
Available Energy	kWh	0.5	0.3
Efficiency	%	90	90
Cycle-life, 25 Wh Profile	Cycles	300,000	300,000
Cold-Cranking Power at -30oC	kW	7	5
Calendar-life, Years	Years	15	15
Maximum System Weight	kg	60	40
Maximum System Volume	Liter	45	32
Selling Price/System @ 100k/yr)	\$	800	500
Maximum Operating Voltage	Vdc	≤ 4 00	≤ 4 00
Minimum Operating Voltage	Vdc	$\geq 0.55 \ V_{max}$	\geq 0.55 V _{max}
Self-discharge	Wh/day	50	50
Operating Temperature Range	°C	-30 to 52	-30 to +52
Survival Temperature Range	°C	-46 to 66	-46 to +66

Targets for Plug-In HEV Electrochemical Energy Storage Systems

Characteristics at EOL (End of Life)		High Power/Energy Ratio	High Energy/Power Ratio
		Battery	Battery
Reference Equivalent Electric Range	miles	10	40
Peak Pulse Discharge Power (10 sec)	kW	45	38
Peak Regen Pulse Power (10 sec)	kW	30	25
Available Energy for CD (Charge Depleting) Mode, 10 kW Rate	kWh	3.4	11.6
Available Energy for CS (Charge Sustaining) Mode	kWh	0.5	0.3
Minimum Round-trip Energy Efficiency (USABC HEV Cycle)	%	90	90
Cold cranking power at -30°C, 2 sec - 3 Pulses	kW	7	7
CD Life / Discharge Throughput	Cycles/MWh	5,000 / 17	5,000 / 58
CS HEV Cycle Life, 50 Wh Profile	Cycles	300,000	300,000
Calendar Life, 40°C	year	15	15
Maximum System Weight	kg	60	120
Maximum System Volume	Liter	40	80
Maximum Operating Voltage	Vdc	400	400
Minimum Operating Voltage	Vdc	>0.55 x Vmax	>0.55 x Vmax
Maximum Self-discharge	Wh/day	50	50
System Recharge Rate at 30°C	kW	1.4 (120V/15A)	1.4 (120V/15A)
Unassisted Operating & Charging Temperature Range	°C	-30 to +52	-30 to +52
Survival Temperature Range	°C	-46 to +66	-46 to +66
Maximum System Production Price @ 100k units/yr	\$	\$1,700	\$3,400

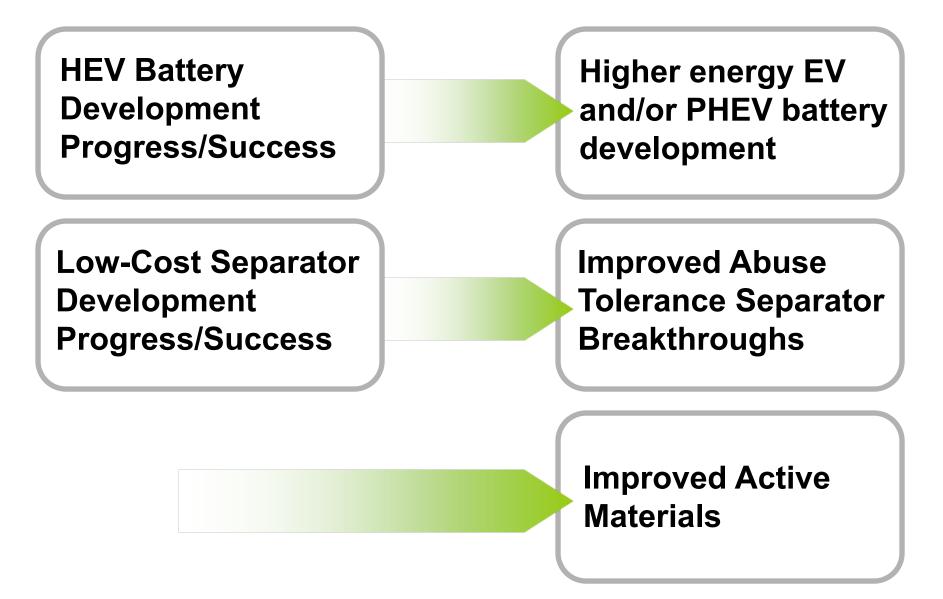
USABC Kent Snyder, May 19th, 2009

Current USABC PHEV Programs

A123 SYSTEMS	Develop batteries using nanophase iron- phosphate	
Johnson Controls	Develop batteries using a high energy nickelate/layered electrode	
Compact power, inc. / LG Chem	Develop batteries using Manganese-spinel based chemistry	
Ener De Lithium Power Systems	Develop cells using nano-phase lithium titanate anode and a high voltage cathode	
3M	Develop advanced high-energy cathode materials for PHEV applications	
<u>C E L G A R D</u>	Develop separators with high temperature melt integrity	
INT ERHATIONAL	Develop separators with high temperature melt integrity	

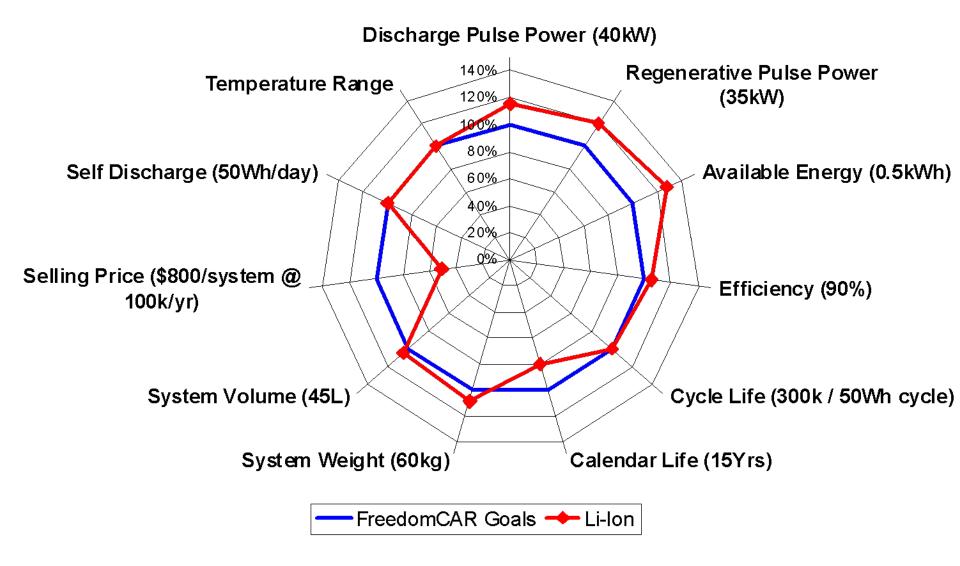
High-Power HEV Li-Ion

- Delivery of pack systems with practical and detailed cost models
- Delivery of functional module assemblies with incorporation of advanced abuse tolerance separator functionality
- Detailed thermal and airflow studies of cells, modules, and pack assemblies
- Detailed abuse tolerance studies of cells and modules


High-Power / High-Energy (PHEV) Li-Ion

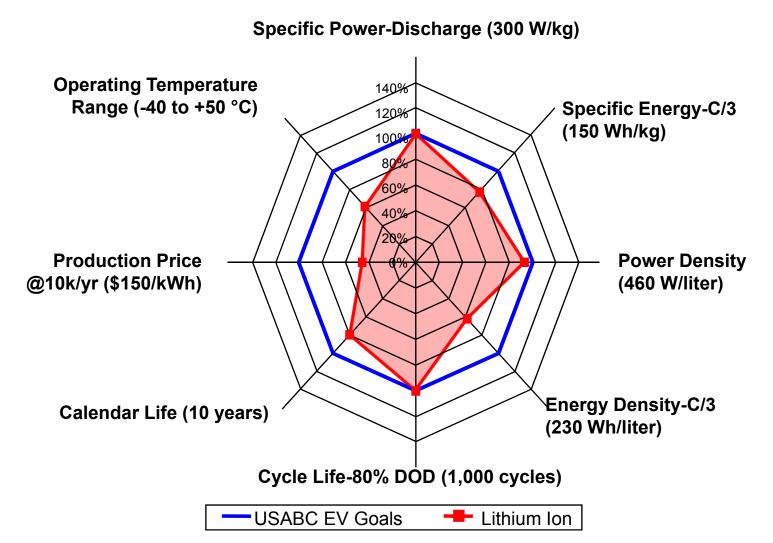
- Significant demonstrated progress towards cycle life goals

Program Focus Trends



HEV Battery Status

(High Power Batteries)



EV Battery Status

EV (High Energy) Batteries

USABC Kent Snyder, May 19th, 2009

Challenges

Calendar Life:

- 15-year battery life in automotive environment
- Accurate and directly comparative cycle/calendar life determinations/predictions

• Cost:

- Goals are aggressive for any market
- Raw material price fluctuations can have significant impact on cost estimations over course of multi-year programs

Abuse Tolerance:

- Varying cell formats/sizes complicate the achievement of directly comparative abuse response results
- Simulation of internal short circuit as a potential failure mechanism

Public Perception:

- Media and other promotion of unrealistic expectations for battery capabilities present a powerful negative distraction from focus on practical progress for battery development programs

- USABC Technical Advisory Committee Members
- Dave Howell / Jack Deppe (DOE)
- Jeff Belt (INL)
- Vince Battaglia (LBL)
- Ira Bloom (ANL)
- Pete Roth (SNL)
- Ahmad Pesaran / Kandler Smith (NREL)
- BATT program contributors