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Overview

Timeline Barriers
B An overwhelming number of materials are
m Start — Oct. 2008 being marketed by vendors for Lithium-ion
batteries.

® Finish — Sep. 2014 — How to select and screen these materials

within the effort allocated to this project?
B < 8% Complete Pro)

B No commercially available high energy
material to meet the 40 mile PHEV application
established by the FreedomCAR and Fuels

Partnership.
BUdQEt B The impact of formulation and fabrication on
performance of electrode materials with a
B Total project funding in FY2009 broad variation of chemical and physical
—DOE: $350K properties.
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Objectives of This Study

B To identify and evaluate low-cost cell chemistries that
can simultaneously meet the life, performance, and
abuse tolerance goals for Plug-in HEV application.

B To enhance the understanding of advanced cell
components on the electrochemical performance and
safety of lithium-ion batteries.
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Approach

B Focus of the investigations will be shifted to high energy materials

— Avoid materials based on rare elements, expensive precursors, or
elaborate processing

— Search battery material suppliers for new materials
B Material screening process will include
— Test protocol development for lab scale cells
— Evaluate materials for PHEV use by testing their
» Rate capability,
 HPPC impedance,
» Cycle life, and
* Thermal properties (DSC)
— Use laboratory scale cells — coin cell, fixture cell, and pouch cell.

B Recommend promising materials for further thermal abuse evaluation and
consider for use in longer-term aging studies.
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Technical Accomplishments

B Test Protocol Development for material screening
®m LiFePO,: Mitsui Engineering Shipbuilding (MES), Japan
— Carbon coated nano size particle
— Electrochemical enhanced by engineering
= Li,,[Ni,CoMn,,,O, (NCM): Toda Kogyo, Japan
— High tap density
— Surface fluorination
B LiMn,O,: Tronox, USA - Domestic supplier
— Doping
— Fluorination

® LiNi,Co,Mn,O,: SoBright, China

B Other materials tested, but not shown here, include
— Graphite
— Separator
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USABC Requirements of
Energy Storage Systems for PHEV

High High
Characteristics at EOL Power/Energy |Energy/Power u Test procedure, and. m“ethOd
(End of Life) “eile Ratio have been defined in “Battery

Test Manual for Plug-in

Reference Equivalent _ Hybrid Electric Vehicles” by
Electric Range miles 10 40 INL 2008
Peak Pulse Discharge :
Power (10 sec) KW 45 38 B The energy requirement is a
Peak Regen Pulse Power challenge for PHEV success.
(10 sec) kW 30 25
Avallable Energy for CD
(Charge Depleting) Mode, C-rate calculation for PHEV
10 kW Rate kWh 3.4 11.6 Available
Available Energy for CS Energy* Peak rate CD rate
(Charge Sustaining) o
Mode KWh 05 0.3 20% 17¢ 0.5¢
Maximum System Weight|kg 60 120 60% 2.0C 0.4C
Maximum System VolumgLiter 40 80 70% 230 0.5C

* The calculation includes 30% energy margin.

B The discharge pulse rate is equal to 2C using 60% energy in the battery.

B The charge depleting (CD) rate is equal to C/3 when 50% of battery energy will be
used.
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Capacity Requirement for Electrode Materials to
Reach PHEV Weight Goal
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o] Assumptian:
O Fix material density (Gen2)
]
-8 Morminal Valtage, v 36
é ASl, ohmcm?2 a0
350 Range(CD:70%), mile 40

Battery power, kW a0.0
Capacity at Cf3, Ah g0.0
Mumhber of modules 7

Cells per module 12
Cells per battery a4
M/P thick, pm 98100

300
é@’ﬁ\so 160 170 180 190 200 210 220 230
&Y Cathode Capacity, mAh/g Calculated from Battery Design

@6& Model by Paul Nelson (ANL)

B The specific capacities of anode and cathode materials should be above 350 and
170 mAh/g, respectively, to meet the PHEV goal with weight and volume
requirements.
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Battery Cost Analysis

B The unit cost of 20 kWh battery is 100000 i
more than $4500, according to Battery
Design Model by Paul Nelson (ANL).

B Material cost makes the major
contribution to the battery cost.

10000 —

1000 —

Reserve, million tons

100 —

— Active materials, positive and : T

negative, take half of material cost. e T on  owm e
— Electrolyte and separator are the hitp:/WwWw.usgs.gov/

next major contributors. 100

B Manganese and lron base materials _
has the potential to reduce the cost. T

—
|

B New high energy density anode will
significantly reduce the cost.

B New electrolyte and separator should
be investigated.

Price, $/kg

0.1 1+—

001 T T T

Co i I¥in Fe

http://www.metalprices.com/
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LiFePO,: Mitsui Engineering Shipbuilding (MES)

Parameter

Current target value

Measured value

Measurement method

53~6.1wt.%

High-frequency furnace

Carbon content (target: 5.6 wt%) 6.0wt% methode
Specific surface area 18~26 mg 23.9mig BET method
Bulk density 0.18~0.28 gfcm”® 0.21gfcm? -
Tap density 0.40~0.52 g/icm® 0.44g/cm” -
Particle size (D50) 1.1~1.5um 1.4pm Laser scattering method
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High Specific Capacity of MES LiFePO,

40 L] | T I L] | T I ¥ | L] | ¥ I L] | ¥ | : I T
P-char Li/LiIFePO :
3.8 - e P_dis1 30V~38YV o A
C/10 rate ‘ E
« E
3.6 1 Charge : E 7]
S — e
. =
% 3.4 4 { : § =
© 1 discharge ¢« ©
> ‘®
3.2 4 . 8 4
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« O
3.0 4 e
¢« w035
2.8 — 1T r I T r 1 * T — T T T T ¢

I ] !
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Capacity, mAh/g

M Specific capacity of LiFePO, is determined to be 160 mAh/g with about 5%
irreversible capacity loss during the 1st cycle between 3.8 V and 3.0 V at C/10 rate.
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Voltage, V

High Rate Performance of MES LiFePO,

C rate test
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B The Graphite/LiFePO, cell can deliver more than 80% capacity at 10C
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rate.
B ASI results of HPPC is comparable to Graphite/LiNiy C0g 15Alg 505 lithium

ion battery.




Engineering Effect on MES LiFePO, Performance

ASI @ 10% DOD vs. Porosi

330
o JA0T] v disth i
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22607 rFEEQEH (disch ff'
— — Exqpon. (disc
£ 200 : 053 0
o R?=0966 {,j- m
% 120 = =
— 100 bS5 . 5
< 4 1 P )
e ¥ ©
1] T T T T O
20 A 40 50 &0 70 o
Parasity, % o)
B The ASI increases with increasing 3
electrode porosity. o3

B According to SEM image, much better
contact between the particles are obtained
after calendering.

B The carbon/carbon matrix is likely to be the
major cause for the high resistance of the
cell with high porosity.
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Toda Li,,,[Ni,Co,Mn,],.,0,(NCM):

Serial of lithium rich NCM materials with various Ni, Co, and Mn ratios

Voltage Profile of Toda NCM

Advantages of Toda materials: +s
< High energy density .
» High specific capacity,
> High tap density, N T
> More capacity with nickel rich B
material = 25_- i Li/NCM half cell
> High electrode loading density 117 G0 ate,
< Better stability with surface I EE}:;; '
fluorination e

=20 1] 20 i0 &0 a0 00 120 140 160 130 200
Capacity, mahtg

Sample BET D50 Tap density Capacity, mAh coulombic |ASI

producer |ID m2/g Lm gfcm3 charg-1 disch-1 % chm-cm?2
NCM111 0.39 6 2.43 169.72 148.65 87.59 43.8

Japan [NCM523 0.23 10.2 2.37 191.26 162.53 84.98 28.5
NCM622 0.22 10.8 2.61 201.18 166.76 82.89 28.5

NCM111 0.59 8 2.4 177.68 156.66 88.07 348

Germany |[NCM111/F 0.36 8.2 2.3 181.70 159.88 87.99 35.8
NCM111/HD 0.26 8.5 2.8 170.00 147.33 86.66 36.2

A
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9C HPPC Impedance Results of Liy,,[Ni,Co Mn,],_.0O,

Toda Japan Toda Germany
80 T T T T T T T T a0 . | . | . | . |
NCM111 = pul-079 o reg-079 L
NCM523 & pul-081 =~ reg-081
NCM622 ¥ pul071 v reg-071
NCM111 pul-075 reg-075
60 &0 NCM111/F  « pul-069 < reg-069 4
“c - - NCM111HD » pul-088 +* reg-088
S o 5
£ . o - :
0- O H u [m] -g ‘ gﬂ,
7 m| ] ] o v & *
0 S (U e N < 40 % #
s 3 $ 8 g g 1 %
| 2 e m g . Yo
v 3 - ¥ AR
20 T T T T T T T T T 20 T T T T T T T T T
0 20 40 60 80 100 0 20 40 60 80 100
DOD, % DOD, %

B The pulse ASI of fluorinated NCM
and high tap density NCM are similar
to each other.

B NCM523 and NCM622 have
comparable ASI (30 ohm-cm?) to NCA
cell (Gen2), which is lower than that of
NCM111 electrode.
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Fluorination Effect on Toda Li,,,[Ni,Co Mn,], O,

Cycle - Toda Germany DSC - Toda Germany

T T T T T T T T T T T T -25 1
2.5 4 - Lap Solvent: ECJ/EMC (347
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5 DsC:10%imin “ﬂ
.0 ! - 4. Mormalized to active m aterial L
& N & & = e
iii:"::::..."" 2  MNCM111
=y AhaagaiitTeen, = L] — NCM111F
T s Ada z — NCM111/HD
= T
o I Bk room tem perature E
=104 * NCMI111F C rate | T .
o & MCMA11MHD 4 25% ~ 3.0 W
0.5 4 -
AN
0.0 T T T T T T T T T T T ! ! ! ! !

0 T4 6 g 10 1z 14 16 18 2D 50 100 150 0o o 300

Cycle Temp., C

B Advantages of fluorinated NCM

— Improve the cycle life under 1C rate continuous charge and
discharge at room temperature.

— Reduce the heat generation at fully charged state with electrolyte.

A

Argonne

cle Technologies Prog

TORY



Fluorination Effect on Tronox LiMn,0O,

DSC of LiMn,0O, B Tronox is domestic
o p—t .1 manganese spinel supplier.

B The Tronox spinel with
following characteristics

» Aluminum doped
» Chromium doped
» Surface fluorinated

10

Heat, W/g
[a2]
1

SEM of LiMn,0O,

0 I 50 | 100 I 150 I 200 I 250 I 300 I 350
temp, °C
B The thermal stability of LiMn,O,

can also be improved by
fluorination.
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SoBright NCM Material (LiNi,Co,Mn,0,)

B The NCM might provide
— Higher energy density
— Higher power

Physical Properties

Item Typical value

Ni+Co+Mn (wt%) 58.6
PSD (um) D10 6.08

D30 11.13

D90 22.73
Tap Density (g;’cm3 ) 2.38
SSA (m’/g) 0.25
Morphology Spherical particle
pH value 11.08
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High Capacity of SoBright Material

Specific Capacity Differential Capacity Plot
45 L —l L— L — P P BRI REPUN RPN SR RPN SRR PR SRR |
MAG/SB cell 06
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425V ~275V 7 1 3rd cycle 'y a5y
40- CHO, RT = 04
| 191! .
= g 0.2 1
o 4. S
& 20 1st-charg E_ 00
S 1st-disch b
2nd-charg e ]
2nd-disch © 024
3.0 4 3rd-charg
3rd-disch 04
| : w081 05 ‘ w076
25 ) —T— — I — 8t——T T T 1T T T 1T T 1T 11
0 50 100 150 200 28 30 32 34 3B 38 40 42 44 46 48
Capacity, mAh/g Voltage, V vs. LilLi+

B The reversible capacity between 4.3 V and 3.0 V is about 162 mAh/g with
14% capacity loss during first cycle.

B The cutoff voltage can be extended to 4.5 V and 4.7 V with more than 170
and 180 mAh/g reversible specific capacity, respectively.

A
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Power Capability and Thermal Stability

120 —T— 777 T P U RPN I SR S NI R
25
1 MAG/SB cell HPPC = ; | LisBeel DSC
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5C HPPC ' | 10°C/min
80+ m  disch-079 A -
~ ¢ regen-079 o 191
5 4+ disch-081 = ——NCM111
g 601 v regen-081 L 5 ——SB
5 Q-0
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7] n
< 40 i
' 4 5
20 4 i
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o] r I r I r I r I r ] LA — T 1 LI | 7 LI | LI | — T T
0 20 40 60 80 100 0 50 100 150 200 250 300 350 400 450
DOD, % Temp.,"°C
B The ASl is about 30 ohm-cm?, which is comparable to NCM material.

B The thermal stability of SB blend is comparable to NCA material.
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Plans for Next Fiscal Year

B [nvestigate materials from different suppliers for high energy
(PHEV) and high power (HEV) application

— Hitachi Chemical’s anode materials

— Nano-size LiMnPO, from HPL
B New binder study
New electrolyte study — Fluorinated solvent (Daikin)
B New anode materials search and evaluation

— High energy density

— Stable material

B Continue to evaluate advanced cathode, anode, binder,
separator, and electrolyte systems as they become available
from various sources.
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Summary

B MES olivine can be used for high power applications.
Electrode optimization is needed to achieve its best
performance.

W Variations of Toda Liy,,[Ni,Co,Mn,], ,O, (NCM) materials
indicate that the nickel rich material can deliver high energy
density. The surface fluorination can further improve its
thermal and cycleability.

B Tronox spinel can supply high power capability. The surface
fluorination improves the thermal stability.

B SoBright NCM material has high power and high energy
density. Its thermal stability is comparable to NCA (Gen2)
electrode.
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