DOE’s Effort to Reduce Truck Aerodynamic Drag through Joint Experiments and Computations

DOE Annual Merit Review, Project ID # vss_14_salari
May 19, 2009

Kambiz Salari

This presentation does not contain any proprietary, confidential, or otherwise restricted information
Overview

Timeline
On going
• FY09 large-scale wind tunnel test at NASA Ames research center, NFAC facility, 30% complete

Barriers
Target
• By 2013 - Reduce aerodynamic drag of class 8 tractor-trailers by approximately 25% leading to a 10-15% increase in fuel efficiency at 65 mph

Budget
• Total project funding prior to FY08, $2.5M
• Funding received in FY08, $600K
• Funding for FY09, $300K

Partners
• Navistar, Inc.
• Michelin
• Freight Wing Inc.
Objectives

- **In support of DOE’s mission**, provide guidance to industry to improve the fuel economy of class 8 tractor-trailers through the use of aerodynamic drag reduction
- **On behalf of DOE** to expand and coordinate industry participation to achieve significant on-the-road fuel economy improvement
- **Joined with industry in getting devices on the road**
- **Demonstrate** new drag-reduction techniques and concepts through use of virtual modeling and testing
- **Full-scale wind tunnel validation of selected devices with industry collaboration and feedback**
Milestones

- Full-scale wind tunnel test of selected drag reducing add-on devices at NASA Ames research center, NFAC facility.
- Testing schedule
 - Installation Geometry/Concept Design, 23-March-09
 - Requirements Draft Document to NFAC, 20-April-09
 - Statement of Capability (SOC) to LLNL/Navistar, 11-May-09
 - Signed SOC, 18-May-09
 - Test Plan, 1-July-09
 - Test Planning Meeting, 6-July-09
 - Installation at Facility, 3-Aug-09
Approach

Design & test devices/concepts for aerodynamic drag reduction with industry collaboration and feedback

- New(existing) devices and integration concepts
 - Science based

- Virtual testing environment
 - Full-scale conditions
 - Realistic truck geometry

- Full-scale wind tunnel validation
 - NFAC/NASA Ames 80’x120’
 - NRC, Canada
 - Freightliner

- Collaborative Efforts
 - Industry - Manufacturers, Fleets
 - Scientists - National Labs, NASA, Universities

- Track & road demonstration
 - Manufacturers and Fleets
 - Scientists
Class 8 tractor-trailers are responsible for 11–12% of the total US consumption of petroleum.

1% increase in fuel economy = 245 million gallons diesel fuel/year saved.
Aerodynamic drag and fuel consumption

Most drag is from pressure difference

\[\text{Drag} = C_D \times S \times \left(\frac{1}{2} \right) \rho U^2 \]

\[\frac{\Delta \text{FuelConsumption}}{\text{FuelConsumption}} = \eta \times \left(\frac{\Delta C_D}{C_D} + \frac{\Delta S}{S} + \frac{3\Delta U}{U} \right) \]

\(\eta \approx 0.5-0.7 \)

- Shape
- Cross-section
- Speed

Skin friction

Body

Airflow

higher pressure

lower pressure

Net pressure force

factor of 3!
Most of the usable energy goes into overcoming drag and rolling resistance at highway speeds.

Losses in nearly all of these categories can be reduced by employing presently available technology.
Aerodynamic drag breakdown on a typical truck

<table>
<thead>
<tr>
<th>Component</th>
<th>C_d</th>
<th>C_d pres</th>
<th>% of total</th>
<th>C_d vis</th>
<th>% of total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tractor</td>
<td>0.431</td>
<td>0.417</td>
<td>97%</td>
<td>0.014</td>
<td>3%</td>
</tr>
<tr>
<td>Trailer body</td>
<td>0.106</td>
<td>0.078</td>
<td>74%</td>
<td>0.028</td>
<td>26%</td>
</tr>
<tr>
<td>Trailer axle & wheel assembly</td>
<td>0.112</td>
<td>0.107</td>
<td>96%</td>
<td>0.005</td>
<td>4%</td>
</tr>
<tr>
<td>Vehicle</td>
<td>0.649</td>
<td>0.602</td>
<td>93%</td>
<td>0.047</td>
<td>7%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Component</th>
<th>C_d</th>
<th>% of total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tractor</td>
<td>0.431</td>
<td>66%</td>
</tr>
<tr>
<td>Trailer</td>
<td>0.208</td>
<td>34%</td>
</tr>
<tr>
<td>Vehicle</td>
<td>0.649</td>
<td>100%</td>
</tr>
</tbody>
</table>

Tractor 66%
Trailer body 16%
Trailer axle & wheels 18%
Add-on devices performance

- Base flaps: 4-10% FEI (Fuel Economy Improvement)
- Underbody devices: 5-6% FEI
- Gap devices: 1-2% FEI
- Super wide single tires: 3-4% FEI
A full-scale wind tunnel test is planned

- Evaluate and understand the performance of aerodynamic drag reduction devices
 - Multiple tractors and trailers to determine the influence of the upstream and downstream flow on the device performance
 - Varying yaw angle to determine the sensitivity of the device performance to crosswinds
- Measure the acoustic signature of drag reduction devices
Selected drag reduction devices will be tested

~ 3 gap devices
~ 10 underbody devices
~ 2 base devices

- Devices are selected based on existing performance data
- Individual and combinations of devices will be tested
- Device performance will be evaluated under different tractor-trailer combinations
- Top-performing devices will be down-selected for track testing
Technical accomplishments

- **Drag reduction concepts developed/tested**
 - Base devices: at least 12
 - Underbody: at least 6
 - Tractor-trailer gap: at least 5

- **Joined with industry** to perform a full-scale wind tunnel validation test of high-potential candidate devices at NASA Ames research center, NFAC facility

- **In support of the DOE’s objective (awarded solicitation)**, we have coordinated with industry to form a team that includes tractor, trailer, 3rd party device, and wide tire manufacturers and a large fleet to bring candidate devices to the market within 2.5 years

- **Insight and guidelines** for drag reduction provided to industry through computations and experiments

- **International recognition achieved** through open documentation and conferences
Future plans

- Apply the candidate devices from the full-scale wind tunnel test toward the DOE solicitation
 - Optimize the performance of candidate devices
 - Perform track testing on candidate devices
- Continue to evaluate and design new and existing drag reduction devices/concepts using LLNL’s virtual testing environment
- Explore the benefits of tractor-trailer integration for drag reduction (Geometry, flow, and thermal)
- On behalf of DOE, continue to coordinate industry participation and achieve industry accepted drag reduction devices
Summary

- Conducting full-scale experiments in the world’s largest acoustically-treated wind tunnel to obtain performance data with significant industry participation
 - Multiple tractors and trailers up to 53 feet in length
 - High quality data due to negligible wind tunnel blockage effects
 - Obtain acoustic signatures of drag reduction devices
- All performance data will be made publically available and will serve as the foundation for the awarded DOE solicitation