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Overview

Timeline
• Project provides fundamental 

research supporting DOE/industry 
advanced engine development 
projects.

• Project directions and continuation 
are evaluated annually.

Budget
• Project funded by DOE/VT

• FY09 funding:  $580k

• FY10 funding:  $620k

Barriers identified in VT Multi-Year Program Plan
• Inadequate fundamental knowledge of engine combustion:

– Fuel injection, evaporation, and mixing;
– Heat transfer and thermal stratification;
– Ignition, low-temperature combustion, and emissions formation.

• Target goals for Advanced Combustion R&D (2015):
– 25% Gasoline fuel economy improvement;
– Achieve Tier II, Bin 2 emissions with < 1% thermal eff. penalty.

Partners
• Project lead: Richard Steeper;  Post-doc: Russ Fitzgerald

• University/National Lab:
– Lawrence Livermore National Lab and University of Wisconsin:

• KIVA model of automotive HCCI optical engine.
– Stanford University:

• 5-year diagnostic development program (completed this year).

• Industry:
– GM & Ford (extensive technical interactions);
– 15 Industry partners in DOE’s Advanced Engine Combustion 

Working Group.
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Relevance: Objectives and Milestones
• Overall objective:

– Expand our fundamental understanding of low-temperature combustion (LTC) processes to remove 
barriers to the implementation of clean and fuel-efficient automotive HCCI engines.

• Near-term objectives:
– Quantify thermal and chemical effects of the negative valve overlap (NVO) fueling strategy used to 

control and extend HCCI combustion.
• Milestone: Perform experiments comparing thermal effects of NVO fueling with intake air heating.
• Milestone: Perform seeding experiments to determine role of specific NVO product species.

– Characterize the extent of NVO reactions during NVO-fueled operation:
• Milestone: Optimize our laser-absorption diagnostic to measure [CO] in fired engine.

– Advance the capabilities of our computer models of automotive HCCI combustion.
• Milestone: Predict reactive products of NVO fueling using Chemkin 0-D engine model.
• Milestone: Simulate fired NVO operation of our engine using KIVA model.
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Approach
• Perform experiments in an optical engine equipped and 

configured for automotive HCCI combustion strategies.

• Develop and apply diagnostics to acquire in-cylinder 
measurements of fundamental physical processes.

• Apply suite of computer models to guide and interpret 
engine experiments.

• Leverage knowledge gained through technical exchange 
with DOE Vehicle Technologies program participants.
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Technical Accomplishments – FY10
• Our current primary focus is NVO operation as a 

promising strategy for HCCI combustion control 
under low-load conditions.

– NVO operation enables dilution/thermal control through 
residual gas retention;

– In addition, fuel can be injected during NVO providing 
further control of main combustion.

Terminology:
EVC, IVO: Exhaust valve closing, intake valve opening
CAD aTDC-Main: Crank angle degrees after top dead center of main combustion

EVC IVO

MAINNVO
Variable

NVO
inject.

Fixed
MAIN
inject.
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Technical Accomplishments – FY10
• Our current primary focus is NVO operation as a 

promising strategy for HCCI combustion control 
under low-load conditions.

– NVO operation enables dilution/thermal control through 
residual gas retention;

– In addition, fuel can be injected during NVO providing 
further control of main combustion.

• Accomplishments of our NVO research this year are 
described in this section:

– NVO engine experiments (details at right);
– Diagnostics for in-cylinder measurements;
– Model development.

• Begin by looking at NVO-fueling experiments…

Engine Automotive,
1 cyl., optical

Valve overlap -150 CAD

Resid. gas fraction ~50%

Geom. compr. ratio 11.5

Speed 1200 rpm

Fuel Iso-octane

Typical operating conditions

EVC IVO

MAINNVO
Variable

NVO
inject.

Fixed
MAIN
inject.

Terminology:
EVC, IVO: Exhaust valve closing, intake valve opening
CAD aTDC-Main: Crank angle degrees after top dead center of main combustion
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NVO fueling assists control of main combustion
• Our experiments have characterized the effects of 

both the amount and timing of NVO fuel injection 
on combustion phasing. 

• The relationship between NVO fueling and main 
phasing is complex, e.g., effects of NVO SOI on:

– 10% burn point of main combustion (CA10);

2010 SAE Paper No. 2010-01-0164
SOI: Start of injection*

*

Low load: 150 kPa
NVO fuel mass: ~10% of main fuel
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NVO fueling assists control of main combustion

Low load: 150 kPa
NVO fuel mass: ~10% of main fuel

• Our experiments have characterized the effects of 
both the amount and timing of NVO fuel injection 
on combustion phasing.

• The relationship between NVO fueling and main 
phasing is complex, e.g., effects of NVO SOI on:

– 10% burn point of main combustion (CA10);
– Temperatures at intake valve closing (IVC).

Early NVO SOI Late NVO SOI

– We have identified a clear distinction between early 
and late NVO SOI that is seen throughout our results.

• A convenient approach for analyzing our results is 
to begin with the NVO period and proceed through 
the cycle to main ignition…
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Retarding
NVO SOI

Examination of HR during NVO period
• We have characterized several NVO processes:

– Residual trapping via computed temperatures;
– Fuel injection via spray imaging;
– Combustion and reformation via:

• Optical measurements of composition (more later);
• Heat-release calculations.

• NVO heat-release analysis provides insight:
– Phasing and duration of NVO HR progress 

monotonically with NVO SOI;

Early
SOI

Late
SOI

– But we find that NVO combustion efficiency falls off 
dramatically for late NVO injection.

• Piston wetting is an obvious factor:
– We observe fuel films, pool fires, and rich combustion 

associated with late NVO injections;
– These provide a plausible explanation of the late vs. 

early SOI behavior.

• Next experiments shift focus from the NVO period 
to the end of intake stroke…
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Examination of temperatures at IVC

2010 SAE Paper No. 2010-01-0343 *

*

• Useful insights come from comparing NVO-fueled 
(split injection) with main-fueling-only operation:

– Does NVO fueling have the same effect as intake air 
heating on main combustion phasing?

– If so, then we would say that its effect is primarily 
thermal, and not chemical.

• To aid comparison of these experiments, we 
developed a rigorous cycle-temperature model.

• Sample graphs show calculated temperatures at 
IVC as a function of recorded CA10.

– Early NVO fueling (top): for a given CA10, temperatures 
for the two cases are the same.  Thermal effect.

– Late NVO fueling (bottom): The same CA10 is achieved 
with a lower TIVC.

– This is important evidence of a possible chemical effect.

• Further evidence of this chemical effect is seen if 
we look at the main compression stroke…
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Examination of HR during compression stroke

IgnitionIVC

• Selected NVO- and main-fueled cases with the same 
main combustion phasing are compared:

– Cumulative AHR is plotted from IVC through ignition.
• Early NVO plot (top): The traces are superimposed 

indicating an identical thermal history.
– All traces generally follow predicted cylinder heat loss.
– Again, we see only thermal effects for early NVO fueling.

7 J

• Late NVO plot (bottom): The late-NVO-fueling trace 
deviates substantially from the main-fuel case.

– Exothermic reactions starting near -60 CAD release 7 J.
– These anomalous results provide clear evidence of an 

important chemical effect of late NVO fueling.

• For further assessment of chemical effects we turned 
to chemical kinetic models…
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CHEMKIN simulations provide support 
• We modeled the same experiments using a Chemkin 

0-D engine simulator, along with:
– Detailed iso-octane/n-heptane kinetics mechanisms;
– Initial and boundary conditions from the experiments.

• Model results support our engine data:
– Main-fuel-only and NVO early-SOI fueling traces are 

indistinguishable.
– But NVO late-SOI fueling leads to predicted early 

exothermic reactions, albeit less significant (2 J vs. 7 J).
• The simulation also identified potentially important 

reactive species carried over from NVO:
– Candidates include ethylene, acetylene, and formaldehyde.

• To test specific candidate species, we began a series 
of seeding experiments this year…

2.1J
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Seeding experiments
• These experiments test for chemical effects by 

seeding select species into the intake charge.
– Candidates are reformed or partially reacted products of 

NVO reactions, identified by modeling.
– Tests are main-fuel-only; no fuel is injected during NVO.
– Seeded results are compared with unseeded.

• Sample experimental results shown for 2500 ppm CO:
– For a given main combustion phasing, temperatures at 

IVC are the same for seeded and unseeded tests.
– Also, no difference in HR is observed during compression.
– We conclude that CO is not responsible for our anomalous 

early heat release.
• All seeding tests conducted so far have had similarly 

negative results, but we have other candidates to test.

• To capture further details of NVO chemistry we have 
developed a new diagnostic…

IgnitionIVC
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Tunable diode laser absorption spectroscopy
• We have developed a laser absorption diagnostic 

for measuring in-cylinder concentrations:
– Multiple pass geometry provides spatial average;
– Fast detector permits time-resolved measurements. 
– Tunable diode laser (TDL) allows selectivity and 

signal-to-noise enhancement.
• Current-year accomplishments for CO detection:

– Upgraded TDL from 1560 to 2319 nm for big signal boost;
– Implemented wavelength-modulation signal processing;
– Successfully performed in-cylinder measurements…

Tunable
diode laser

IR detector

Concave
mirror

Quartz engine
cylinder

Ebert et al., Proc. Comb. Inst. 30:1611-1618 (2005).
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Cycle-resolved measurements of CO
• Sample CO data from NVO-fueled, fired operation:

– 1-ms time resolution through most of cycle;
– Gaps in data due to piston obscuration, high pressure.

• Data trends are complex but repeatable:
– CO produced during NVO and main combustion;
– CO mixing out during intake stroke;
– Steady concentration during exhaust -- matches 

emissions bench within 100 ppm.
TDC
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Cycle-resolved measurements of CO
• Sample CO data from NVO-fueled, fired operation:

– 1-ms time resolution through most of cycle;
– Gaps in data due to piston obscuration, high pressure.

• Data trends are complex but repeatable:
– CO produced during NVO and main combustion;
– CO mixing out during intake stroke;
– Steady concentration during exhaust -- matches 

emissions bench within 100 ppm.
• Initial trials performed for NVO SOI sweep:

– Trends are similar for all early-SOI NVO fueling cases;
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Cycle-resolved measurements of CO
• Sample CO data from NVO-fueled, fired operation:

– 1-ms time resolution through most of cycle;
– Gaps in data due to piston obscuration, high pressure.

• Data trends are complex but repeatable:
– CO produced during NVO and main combustion;
– CO mixing out during intake stroke;
– Steady concentration during exhaust -- matches 

emissions bench within 100 ppm.
• Initial trials performed for NVO SOI sweep:

– Trends are similar for all early-SOI NVO fueling cases;
– Also, late-SOI fueling cases are distinct;
– Measurements support our earlier observations.

• Future steps:
– Record [CO] for a full range of NVO-fueling conditions;
– Apply CO data to validate our KIVA model.
– Extend diagnostic to other species.
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Modeling accomplishments
• Multi-year collaboration with UW and LLNL has 

produced a CFD/kinetics model of our engine:
– Validation using fired data is in progress;
– Includes NVO fueling and combustion/reforming;
– Guides our understanding of NVO strategy.

• We have continued our development and 
application of several other modeling tools:

– Cycle-temperature analysis tool;
– Chemkin 0-D piston/cylinder simulator;
– GT Power 1-D full engine model.

Animated KIVA results
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Collaborations
• University partners:

– University of Wisconsin and Lawrence Livermore National Lab: Development and application 
of a KIVA/Multi-zone kinetics model of the automotive HCCI optical engine continued this year.

– Stanford University: Our 5-year diagnostic-development project was successfully completed 
this year.

• Automotive OEM partners:
– GM Research is actively engaged in our automotive HCCI research program: interactions 

include bimonthly teleconferences, exchange of results, and hardware support.
– Ford Research has defined topics of mutual interest that are the basis of new collaborations. 

• DOE Working Group partners:
– Research results are shared with DOE’s Advanced Engine Combustion and University HCCI 

Working Groups in semi-annual meetings.
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Future Work
• Engine experiments:

– Pursue optical engine experiments designed to reveal underlying chemistry/physics of NVO 
operation.

• TDL absorption diagnostic:
– Characterize the effects of NVO parameters on cycle CO production and consumption.
– Extend diagnostic to detect additional species such as H2O, CO2, C2H2.

• KIVA model:
– Validate model using measured in-cylinder CO concentrations.
– Identify reactive products of NVO fueling for testing via seeding experiments.
– Apply model predictions to interpret engine experiments.

• Upgrade engine facility:
– Plan modifications based on the installation of similar engine hardware in the new Lean-Burn DI 

Spark-Ignition Fuels Lab (Sjöberg).
– Improve optical access, upgrade components, and extend operating conditions to enhance 

relevance of our research to current engine development.
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Summary
• The Automotive HCCI Engine project contributes to the development of low-temperature 

combustion strategies that can help achieve DOE emissions and efficiency goals. 

• The project approach combines:
– Optical engine experiments,
– Diagnostic development,
– Engine and combustion modeling.

• Current work focuses on the NVO combustion strategy. Accomplishments include:
– New insights into thermal and chemical effects of NVO fueling,
– New diagnostic capability for time-resolved, in-cylinder measurements of composition.
– Advancement of HCCI engine modeling tools. 

• Multiple collaborations leverage the impact of our research:
– DOE’s Advanced Engine Combustion group reviews research results and 

contributes feedback;
– GM and Ford provide continual technical and material support;
– University of Wisconsin, and LLNL participate in automotive HCCI engine modeling.
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