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Timeline
 Project start: 2005

 Project end: Ongoing project

Budget
 Funding in FY09: 500k$

 Funding in FY10: 500k$

 Funding for FY11: 500k$ request

Barriers
 Understand, characterize and 

optimize hydrogen engines with 
focus on direct injection

 Evaluate in-cylinder emissions 
reduction techniques

 Improve injector design

Partners
 Industrial partners: Ford, Westport

 Collaborator: Sandia and Lawrence 
Livermore National Laboratories

 International team members: BMW, 
Graz University of Technology, 
Ghent University
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Provide a clean and efficient, readily available tool for utilization 
of hydrogen as an energy carrier

Overcome the trade-off between engine efficiency and NOx 
emissions in hydrogen direct injection (DI) operation to reach 
2010 peak brake thermal efficiency goal of 45% with minimal 
emissions penalty (Tier 2, Bin 5 or better)

Evaluate the NOx emissions reduction potential of in-cylinder 
measures (e.g. water injection, EGR) in hydrogen DI operation

Assess the impact of injector nozzle geometry and injector 
location/orientation and develop optimized configurations

Investigate the potential of multiple injection strategies
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3-D CFD simulation validated using optical results from Sandia 
National Laboratories (03/2009)

NOx emissions reduction potential of EGR evaluated (07/2009)

Analysis of individual optimization measures completed (09/2009)

Upgrade to optimized engine geometry finished (12/2009)

Piezo-actuated DI injectors implemented (01/2010)

Baseline performance comparison of optimized engine geometry 
completed (03/2010)

Efficiency mapping of optimized engine configuration with Piezo
injectors started (04/2010)
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3-D CFD
simulation

H2 injector 
development

(Westport)

Optical
engine

(Sandia)

Injector nozzle
design

Single-cylinder research 
engine

Hydrogen vehicle 
program

(Ford)

Simulation, analysis
(Livermore, Ghent)



Technical accomplishments
Overview
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 In-cylinder emissions reduction
 Efficiency/emissions trade-off with 

exhaust gas recirculation (EGR)

 Assessment of EGR versus water 
injection

Optimized H2 DI combustion engine
 Analysis of efficiency improvement with 

optimized engine geometry

 Impact of optimization on emissions

 Improved injector design
 Validated 3D-CFD simulation used to 

predict mixture stratification



Exhaust gas recirculation (EGR)
Setup and goals
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 Exhaust gas recirculation
 Setup using automotive EGR valve

 Intake and exhaust pressure 
individually adjustable

 Integrated automotive EGR cooler

Approach
 Evaluate EGR rate determination 

strategies in hydrogen operation

 Assessment of impact of EGR rates and 
temperatures on

 NOx emissions

 Engine efficiency

 Combustion stability
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Exhaust gas recirculation (EGR)
Efficiency/emissions trade-off

 Increasing EGR rates lower peak 
cylinder pressures and maximum rate 
of heat release ultimately reducing 
combustion temperatures

 Increasing EGR rates have negligible 
effect on combustion stability

 Increasing EGR rates result in 
increased combustion duration
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Optimizing engine geometry
Basics

Optimization of Direct-Injection H2 Combustion Engine Performance, Efficiency, and Emissions 

10

 Influence of 

 Compression ratio

 Bore/stroke ratio

 Affecting 

 Combustion

 Wall heat transfer

Parameter Unit Base 
engine

Optimized 
engine

Bore mm 89 89
Stroke mm 79.5 105.8
Bore/stroke ratio - 1.12 0.84
Displacement l 0.5 0.66
Peak cylinder 
pressure bar ~120 ~120-160

Compression ratio - 11.5:1 12.9:1
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~2%

 Compression ratio increase expected to 
improve efficiency by ~2% 

 Change in B/S ratio from 1.12 to 0.84 
expected to increase efficiency by ~3%* 

* Z.S. Filipi and D.N. Assanis  ‘The Effect of the Stroke-to-Bore Ratio on Combustion, 
Heat Transfer and Efficiency of a Homogeneous Charge Spark Ignition Engine of 
Given Displacement ‘  International Journal of Engine Research, 1:2, 191-208, 2000. 
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 Indicated thermal efficiency results 
at 2000 RPM and different loads

 Sweep of start of injection and spark 
timing (combustion phasing)

 Significant efficiency improvement (~5-7%) 
with optimized geometry independent of 
engine load

 Start of injection relevant for further 
optimization
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Optimizing combustion system
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 5-hole injector/central location

 100 bar injection pressure

 Simulated turbocharging based 
on hydrogen PFI turbo results

 Operation limited due to peak 
cylinder pressure

 Only early DI possible 
(SOI=140) – later, more 
efficient  SOIs unstable

 Brake thermal efficiency (BTE) 
estimated based on assumed 
friction of 0.70 bar (FEV data)



Optimizing combustion system
3D-CFD optimization of injector nozzle
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Speed 3000 RPM Load 9 bar IMEP
Injector type Piezo Injection pressure 100 bar
Start of injection 110 CA BTDC Injection duration 47 CA  (2.6 ms)
Intake pressure 2 bar Exhaust pressure 1.8 bar

Optimized nozzle (2 hole)Standard nozzle (5 hole)





Optimizing combustion system
3D-CFD optimization of injector nozzle
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Optimized nozzle (2 hole)Standard nozzle (5 hole)

CA  =  4°BTDC
(Ignition Timing = 12°BTDC)
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Collaboration with Sebastian Kaiser’s team at Sandia National Laboratories
Coordination of investigated operating conditions
Optical results used for validation of 3D-CFD simulation

Coordination with Dan Flower’s team at Lawrence Livermore National 
Laboratory

Currently evaluating/coordinating activities

Contract with Westport Innovations Inc.
Subcontract to supply Piezo injectors, drivers and fabricate nozzles

Guidance and support from Ford Motor Company
Input on test plan and activities
In-kind support (engine hardware)

International collaborations
BMW – Mutual updates on goals, progress and research directions
Graz University of Technology – Pre-Doctoral appointee currently working at 
Argonne
Ghent University – Informal collaboration for data analysis



Future work
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Mixture formation and combustion optimization
 Finish performance mapping of upgraded engine configuration

 Optimize injection parameters with 3D-CFD support

 Test 1st generation of Piezo injector nozzles 

 Assess impact of multiple injection strategies employing Piezo-actuated 
injectors on performance, efficiency and emissions

 Test further generations of CFD-optimized injector nozzle designs and 
injection strategies

Hydrogen engine system optimization
 Combine optimized injection parameters (e.g. multiple injection) with in-

cylinder emissions reduction measures (e.g. un-cooled EGR)
 Develop injection strategies for optimized system performance



Summary
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 ‘Optimization of Direct-Injection H2 Combustion Engine 
Performance, Efficiency, and Emissions’ project is focused on
 providing a clean and efficient, readily available tool for utilization of 

hydrogen as an energy carrier

 achieving 45% brake thermal efficiency with minimal NOx emissions
Major accomplishments in FY2010 include

 demonstration of 50% NOx emissions reduction with less than 1% 
efficiency penalty

 5-7% efficiency improvement with simultaneous 50% NOx emissions 
reduction through optimized engine geometry and faster injectors

 3D-CFD simulation established as powerful tool for efficient optimization
 45% brake thermal efficiency achievable with turbo-charged H2 DI engine

 Future work includes
 optimization of injection parameters (nozzle geometry, injection strategy)
 development of optimized hydrogen combustion engine system
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