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Overview

Timeline

= Ongoing project with yearly
direction from DOE

Budget

= FYO09 funding: $1M
= FY10 funding: $1M

Barriers

Inadequate understanding of the
fundamentals of HECC

Inadequate understanding of the
fundamentals of mixed mode
operation

Computational expense of HECC
simulations

Partners

Sandia, Oak Ridge, Los Alamos
Ford

UC Berkeley, University of Wisconsin,
University of Michigan, Lund Institute
of Technology, Chalmers University,

FACE working group, AEC MO
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Relevance to DOE objectives

= By 2015, improve the fuel economy of light-duty gasoline vehicles by 25
percent and of light-duty diesel vehicles by 40 percent, compared to the
baseline 2009 gasoline vehicle.

« Light-duty research focuses on reducing fuel consumption
through investigating HCCI and PCCI part load, and transition to Sl
or CIDI for full load operation

= By 2015, improve heavy truck efficiency to 50 percent with demonstration in
commercial vehicle platforms. This represents about a 20 percent
improvement over current engine efficiency.

« Heavy-engine research directed towards high efficiency strategies,
such as Partially Premixed Combustion and Low-temperature
Diesel Combustion

= By 2018, further increase the thermal efficiency of a heavy truck engine to
55 percent which represents about a 30 percent improvement over current
engines.
« We continue to provide the engine research community with
insight and simulation tools for advanced combustion concepts

Lawrence Livermore National Laboratory UL-
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Objective: Enhance understanding of clean and efficient
engine operation through detailed numerical modeling

O—CH, oH N e
o S ;=0 HO
' —0
H C/ Additive 1 "4 \
2 mve
Hi:C—C—cH 0
HHC“}C-—CHg ch/ 3 HC/
HyC \o Additive 2 \1\}
HsC 32 ’ HO/
CH™ 2 Additive 103 e
/ \c H --“C\ _o. o] ?If? i
HsC c{ 0 o e | §
N \c H, il }#ﬁf}'}'# jﬁf"'#!g’ i
- / i il (nlierg
Additive 3 HaC, HaC Vi "Iq#;'l;,’l;,"## Y
HaC =\c —CH, CHTON ’4#'3":?’4?"%{{:‘%?”";#.
0. < / CH, ilttiiggti i teag
CH: H,C, T i,
- 0 ° el
N &
/ OH NS
HC HO s %"’l"""fff ;
\ Additive 122 Uity f
—c—C¢H i il
ke /C : Additive 4 /
H,C
\o Additive 5 HaC /CHﬁ/OH
/ \c—'O
HO HEC/ Additive 204
Hac--}C"CHa
H.C

Chemical kinetics

Fluid mechanics

Lawrence Livermore National Laboratory

LLNL-PRES- 428114

2010 DOE Merit Review

(=




Milestones: We have developed and experimentally
validated detailed engine modeling tools

e Developed computationally efficient
numerical methods for chemistry and
multi-zone solvers (March 2010)

o Extended Kiva3v-MZ-MPI for better
handling of partially stratified
combustion (February 2010)

CA=455.037

e Expanded analysis of SI-HCCI
transition in ORNL experiments
e (September 2010)
e Analyzed low-load PCCI experiments
’ using Artificial Neural Network
Lawrence Livermore National Laboratory (January 2010) UL-

LLNL-PRES- 428114 2010 DOE Merit Review



Approach: Collaborate with industry, academia and national labs in
the development of analysis tools leading to clean, efficient engines

= Gain fundamental and practical insight into HECC regimes through
numerical simulations and experiments

= Develop and apply numerical tools to simulate HECC by combining
multidimensional fluid mechanics with chemical kinetics

= Reduce computational expense for HECC simulations

= Democratize simulation: bring computational tools to the Desktop PC

Lawrence Livermore National Laboratory LI-
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Technical Accomplishments: We have made significant progress in
improving and applying our advanced simulation tools to HECC
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We strive to develop simulation tools that
provide the most physics per computation cost
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Opportunities for 1000x speedup in computational
chemistry cost through applied mathematics

Perturbation
methods

Adaptive
Sampling

Sparse
Solvers

(=
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99% of the chemistry solution CPU cost is spent
constructing and solving the Jacobian system
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We use applied mathematics techniques
to identify opportunities for improved solver conditioning

Generalized Minimal RESiduals
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Eigenvalue analysis of a preconditioned system shows

significant improvement in overall conditioning
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Eigenvalue analysis of a preconditioned system shows
significant improvement in overall conditioning
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The preconditioned solver substantially improves CPU
cost scaling from cubic to quadratic
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The integration strategies remain under the adaptive
error control of the ODE solver — no accuracy loss
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We use our multizone model to capture multiple
cycles interactions in SI-HCCI transition

Data provided by

ORNL test group
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Experimental return maps show increased cycle-

to-cycle variations during transition ORNL
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The multi-zone return maps show behavior

consistent with experimental data

Multizone
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We observe moderate instability in the early

stages of transition
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In mid-transition, cycle-to-cycle feedback results in

multi-mode instability patterns
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Near the HCCI limit the multi-cycle model starts
to show some bi- and tri-modal skip fire behavior
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Our Kiva3dv-MZ-MPI code shows promising
GDI/NVO PCCI prediction capability

Experimental Data
from SNL (Steeper)
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Our Kiva3dv-MZ-MPI code shows promising
GDI/NVO PCCI prediction capability
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The Artificial Neural Network (ANN) maps detailed
chemistry information into a very fast ignition estimator
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The ANN ignition model adds only 5-10% additional
time relative to a motored Kiva simulation
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Kiva3v-ANN is a useful tool for wide ranging
PCCI design studies with DI strategies
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We have developed an accurate and very flexible
gaseous fuel injection simulation capability
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We have developed an accurate and very flexible
gaseous fuel injection simulation capability
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We are developing gas-exchange models and controllers
for transient operation of VVA equipped PCCI engines
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Feed-forward control with airflow estimator

improves transient stability for NVO PCCI operation
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Collaboration: We have ongoing interactions Industry,
National Labs, and Universities

= Ford; gaseous direct injection

= Near completion of software license with US company for multi-zone
model.

= Advanced Engine Combustion (AEC) working group (Industry,
National labs, Univ. of Wisc.); biannual presentations

* Fuels for Advanced Combustion Engines (FACE) working group

= Sandia National Laboratory; researchers on HCCI| and PCCI,
gaseous injection simulations

= Oak Ridge National Laboratory; SI-HCCI transition and '*C exhaust
analysis for HCCI and Diesel engines

= Los Alamos National Laboratory; Kiva4 development
* Lund Institute; simulating Partially Premixed Combustion
= Tianjin University; PCCI engine control with VVTL

= Other Universities: UC Berkeley, University of Wisconsin, University
of Michigan, Chalmers University

Lawrence Livermore National Laboratory UL-
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Future Work: We will explore strategies for improving
efficiency of CFD and chemistry simulations

Perturbation
methods
Adaptive

Sampling

= Improved computational chemistry solvers
« Sparse solvers
* More efficient data structures
» Heuristics for Jacobian preconditioning
» Eigenstructure analysis
» Hybrid solver solutions
« Solver parallelization compatibility
« New hardware architectures (GPUs)
= Next generation multi-zone chemistry solver
* Improved remap
» Adaptive sampling
« Jacobian reuse
 Integral and perturbation methods

Multi-zone
ODE
system

Mode
Splitting
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Future Work: Graphical Processing Units (GPUs)
can bring supercomputing to the desktop

= Y, Teraflop for $500

= 480 parallel processors

= Codes must be redesigned
P to take advantage of
A arc h | te C tu re

* 3
-
L}
a
ol
f ]
b =]
T
[}
~—
o
o L,
|

Nvidia GeForce 480
= Fortran/C++ Compilers

designed for GPUs now
available

Lawrence Livermore National Laboratory UL-

2010 DOE Merit Review

LLNL-PRES- 428114 88



Future work: extend applicability and
computational efficiency of analysis tools

Enable 3-D fluid mechanics
and detailed kinetics in
today’s desktop PCs

l*g’

Continue to validate and develop
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Summary: we are enhancing our analysis capabilities
and improving computational performance
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