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Timeline
Start date: FY09
End date: On-going

Percent complete:
- project on-going

Budget
Total project funding

- 100% DOE
FY09: $300K
FY10: $300K

Overview

Barriers Addressed

= Low energy
= (Cost
= Abuse tolerance limitations

Partners
= Co-investigators:
- S.-H. Kang, R. Benedek, V. G. Pol,
C. Johnson, J. T. Vaughey (ANL)
= Collaborators:
- Y. Shao-Horn, C. Carlton (MIT)
- M. Balasubramanian (APS- ANL)

- V. Battaglia (LBNL), Jose M. Calderon-
Moreno (Romanian Academy)




Objectives

Design high capacity, high-power and low cost cathodes
for PHEVs and EVs

» Improve the design, composition and electrochemical
performance of Mn-based cathodes

» Explore new processing routes to prepare advanced
electrodes with new architectural designs

» Use atomic-scale modeling as a guide to identify,
design and understand the structural features and
electrochemical properties of cathode materials



Milestones (FY09-10)

Synthesize, evaluate and optimize high capacity Mn-based cathodes
(>200 mAh/g, >3 V) — on going

Engineer and evaluate the electrochemical effects of protective coatings
on composite electrode structures with a high Mn content at high
potentials (>4.2 V) — on going

Model interfacial structures and dissolution phenomena — complete for
LiMn,O, electrodes

Evaluate single-step, autogenic processes for synthesizing new (or
improved) materials, cathode coatings and architectures
— studies initiated

Establish collaborative interactions with EFRC — Center for Electrical
Energy Storage - Tailored Interfaces (Argonne-Northwestern University-
University of lllinois (Urbana-Champaign) — collaborations initiated



Approach

Exploit the concept and optimize the performance of structurally-
integrated, high-capacity electrodes, particularly ‘layered-layered’
XLi,MnO,e(1-x)LiMO, (M=Mn, Ni, Co) electrodes (Task 1)

Design effective surface structures to protect the underlying metal
oxide particles from the electrolyte and to their improve rate capability
when charged (delithiated) at high potentials (Task 1)

Explore autogenic (i.e., high pressure, solventless) reactions to synthesize
advanced electrode materials and surface structures with new
architectural designs (Task 2)

Use first principles modeling to aid the design of bulk and surface
cathode structures and to understand electrochemical phenomena
(Task 3)



1. xLi,MnO,e(1-x)LiMO, Electrodes

Strategy: Embed inactive Li,MnO,; component within LiMO, structure to
stabilize the electrode at high potentials (reduce oxygen activity at surface)
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Path of delithiation
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xLi,MnO,e(1-x)LIMO, (M=Mn, Ni, Co)

U.S. Pat. 6,677,082 (2004); U.S. Pat. 6,680,143 (2004)
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Recap of typical performance:

= 200-250 mAh/g achieved at C/3 rate (50 °C)

= Lower capacity at RT

= Charging electrodes to high potential (>4.4 V) damages

the electrode surface and reduces their rate capability




Li-Ni-PO, Treatment
(0.5Li,MnO,€0.5LiNi, ,,Co, ,:Mn, 3,0, Electrodes)

= Concept: Use Li-Ni-PO, as a solid
electrolyte below 5.0 V to protect
the xLi,MnO;e(1-x)LiMO, electrode
surface at high potentials and to
improve rate capability

= Sol-gel technique (pH<4) used to
etch and coat the electrode

= Theoretical modeling discounts the
possibility of a defect Li; ,,Ni, PO,
(Li;PO,-type) surface structure
(EFRC interaction — Shin,
Wolverton, Northwestern University)
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Thermal Stability of Untreated and Li-Ni-PO, Treated
0.5Li,Mn0O,0.5LiNi, ,,Co,,sMn, ;,0, Electrodes

Heat Flow (W/g)
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= DSC data show that
surface-protected
electrodes, charged to

4.6 'V, are more tolerant to
temperature excursions in
the electrolyte

(1.2 M LiPFgin EC:EMC)



Rate capability of Li, , Ni PO, ,-treated electrodes
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xLi,MnO,e(1-x)LiMO, Electrodes

Evaluation against Li,Ti:O,, and TiO, Anodes for Safe Li-lon Cells

Opportunity:

TiO, electrodes offer a significantly higher theoretical capacity (335 mAh/g)
compared to Li,Ti:O,, (175 mAh/g)

Li,Ti;O,, (LTO) Cells

Carbon-coated TiO, (TiOz-C) Cells

Two sets of 0.5Li,Mn0O,#0.5LiNi, ,,Co,,sMn, 5,0, electrodes with
loadings of 2.1 and 3.1 mg/cm? were prepared with 100-um and 125-um
blades (ANLCC100 and ANLCC125, respectively).
LTO/ANLCC125 — anode limited

LTO/ANLCC100 — cathode limited

Carbon-encapsulated anatase (TiO,-C) product _
synthesized by an autogenic process Electronically-interconnected
(EFRC interaction) TiO,-C nanoparticles

TiO,-C product evaluated against ANLCC100 and ANLCC125, as above
TiO,-C/ANLCC125 — anode limited; TiO,-C/ANLCC100 — cathode limited
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Li,Ti:O,,/xLi,MnO,e(1-x)LiMO, Cells

Anode-limited
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Cell Voltage (V)

TiO,-C/xLi,MnO,e(1-x)LiMO, Cells
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= Voltage profiles of TiO,-C/ANL-NMC cells are similar to Li,TisO,,/ANL-NMC cells.

= TiO,-C/ANL-NMC cells operate at slightly lower voltage because the TiO,-C anode
has a higher redox potential (~1.8 V vs. Li°) than Li,TiO,, (~1.55 V vs. Li%).

= Nanoparticulate TiO,-C anodes offer a higher rechargeable anode capacity (~200
mAh/g) compared to Li,Ti;O,, cells.

= TiO,-C/xLi,MnO,e(1-x)LiMO, cells show a steady capacity fade, attributed to the
instability of the lithiated Li,TiO, (anatase) electrode structure at high lithium
loadings (x>0.5). Goal: Design improved TiO,-based anode structures/architectures.
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2. Autogenic Reactions

Autogenic Reactions: Self-generating reactions that occur within an
enclosed vessel, typically at high pressure and temperature

Y Y

HEAT

Dry powder

Precursor(s) Critical Phase Product

= Product highly dependent on precursor and reaction conditions

700 °C

= Allyl triphenyltin [C,;H,,Sn] 450 551 (3 MiPa) Sni + Ci + Hz(g)T




Synthesis and Properties of LiFePO,

1) FeC,0, precursor

LiH,PO, + FeC,0, % LiFePO, + C + gaseous product

XRD
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Synthesis and Properties of LiFePO,
2) FePO , precursor

Li,CO; + FePO,.H,O0 + C,H,,0O, (glucose) %» LiFePO,/C + gaseous product
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further in the search for advanced
electrode materials and architectures
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3. Simulation of Atomic Structure and
Properties of LiMn,O,, Surfaces

Study motivated by the necessity to understand the surface stability of metal
oxide cathodes at high potentials and implications for solubility

Chemical and electrochemical reactions are sensitive to surface atomic structure,
particularly coordination

Focus on simulation of surface structure of LiMn,O, (‘GGA + U’ level of density
functional theory using VASP code)

Consideration given to Mn- and MnO-terminated surfaces

Classical-potential simulations of MgAI,O, spinel have shown that the (001)
surface is lowest in energy, followed by (110) and (111)

Radical reconstruction is predicted for Mn-terminated (111) surface, in which the
top layers mix to form a stoichiometric Li-Mn-O termination layer

Surface reconstruction of (111) minimizes under-coordination of surface Mn, O
Surface Mn ions are reduced

Despite under-coordination of flat surfaces (terraces), dissolution may require
additional defects, such as non-bridging O

16



Unreconstructed and Reconstructed (111) Surfaces
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Features of Reconstructed LiMn,O, Surfaces

Mn atoms in layer
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Significance of Surface Coordination for Dissolution

= The presence of non-bridging oxygen greatly increases driving force for
dissolution, i.e., energy gain for acid promoted dissolution reactions

LiMn,0, + 2H* — {LiMn,0,-[MnO]} + Mn? + H,0 (1)
{LiMn,0,-[MnO]} + 2H* > {LiMn,0,-[MnO, Li,0]} + 2Li* + H,0 (2)

under-coordinated species at LiM n2()4 surfaces

(bulk coordination: Mn 6, O 3)

atom coordination

Mn 4
Mn 3
0 2

0 1
(non-bridging)

(001) surf

(110) surf
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(110) faces
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wire with (001) axis, (110) faces
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Future Work - FY2010/FY2011

Continue to exploit and optimize xLi,MnO,e(1-x)LiMO,
electrodes (composition and performance) with the particular
goal of reaching or exceeding the energy and power goals
required for 40-mile PHEVs and EVs.

Focus on surface studies: phosphates and fluorides — use
complementary experimental and theoretical approaches to
improve the surface stability, rate capability and cycle life of
high capacity Mn-rich oxide electrodes at high potentials.

Exploit highly versatile, autogenic synthesis technique to
fabricate and evaluate novel electrode materials and coating
architectures, e.g., high capacity TiO, anodes coupled to high
capacity Mn-based cathodes for safe Li-ion cells.

Pursue interactions with energy storage EFRCs.
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Summary

Further progress was made to stabilize the surface, and improve the rate
capability and cycle life of high-capacity xLi,MnO,e(1-x)LiMO, electrodes
(M=Mn, Ni, Co) when charged to high potentials (>4.5 V).
XLi,MnO,e(1-x)LiMO, electrode materials have the attention of industry —
collaborations are in place with materials manufacturers worldwide.

Li, ,, Ni,PO, coatings (0<x<1) improve the rate capability (200 mAh/g at C/1) and
cycling efficiency (~100%) at room temperature; charged, coated electrodes
generate less heat when reacted with electrolyte at elevated temperature.

Autogenic reactions have been used to prepare carbon-coated electrodes in a
single step — this versatile technique holds promise for fabricating electrode
advanced materials (cathodes and anodes) with modified morphologies and
electrochemical properties.

Simulation of Mn-and MnO terminated surface structures of LiMn,O, has
provided insight into atomic coordination and Mn oxidation state that impact

solubility.
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