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Overview

Timeline
• Start date: October 1, 2009  

(new project) 

• End date: September 31, 2010

• Complete: 30%

Budget
• Total project funding

- FY10 $300K

Partners
• Collaborations: Grey (Stony 

Brook), Ceder (MIT), 
Richardson, Kostecki, Doeff, 
Cabana (LBNL), Gabrisch 
(UNO), NCEM, ALS, SSRL

• Project lead: John Newman

Barriers Addressed
• Energy density

• Cycle life 

• Safety



Objectives\Milestones

• Investigate phase transition mechanisms and explore kinetic 
barriers of high-energy cathode materials.  

• Establish direct correlations between crystal structure, composition, 
morphology, performance, and stability. 

• Provide guidelines to design and develop electrode materials with 
improved energy density, rate capability, and safety, especially with 
regard to thermal stability.

• Report thermal stability and performance evaluation of the modified 
LiMnPO4. 

• Report results on the synthesis of layered oxide crystals. 

Milestones

Objectives



Approach

• Prepare well-formed crystals of cathode materials with various 
crystal structures, chemical compositions, sizes, and morphologies.  

• Characterize physical properties and investigate solid state 
chemistry of the crystals using chemical and electroanalytical 
methods, synchrotron based spectroscopies and 
spectromicroscopies, x-ray and neutron diffractions, vibrational 
spectroscopies, scanning calorimetry, and electron microscopic 
techniques.  

• Optimize synthesis and processing conditions, improve 
performance and safety of the cathode materials based on the 
structural and mechanistic understandings.



• LiMnPO4 has high theoretical energy density but low effective energy 
density. Delithiated LiMnPO4 has poor chemical and thermal stabilities.

• What makes LiMnPO4 kinetically slow and thermally unstable?
• How do chemical composition, crystal size and morphology, and 

surface treatment affect performance and safety?
• What can be done to make the olivine phosphates (LiMPO4, M=Mn, Co 

and Ni) practical high-energy cathodes?

• Prepare pristine and substituted LiMnPO4 with controlled morphologies.
• Investigate the effect of size and morphology on the phase 

transformation process.
• Investigate the effects of substitution and surface treatment on 

structure, kinetics and stabilities (physical, chemical and thermal).
• Explore other approaches to producing better-performing LiMPO4.

Olivines



Crystal Synthesis

• Single crystals of pristine and 
substituted LiMnPO4 were 
prepared by the hydrothermal 
method.
• Particle size and morphology 
were controlled by synthesis 
conditions. 



Improved Kinetics
Chemical Delithiation (y=0.5)

LiMgxMn(1-x)PO4 + y(1-x)NO2BF4 →
(1-y)LiMgxMn(1-x)PO4 + yLixMgxMn(1-x)PO4 + y(1-x)NO2 + y(1-x)LiBF4

ENO2
+/NO2 ≈ 5.1 V vs. Li/Li+

• Mg substitution improves delithiation efficiency and phase crystallinity. 
• Best performance obtained with 20% Mg substitution.
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Improved Kinetics
Chemical Delithiation (y=2)

• Mg substitution decreases 
volume mismatch at the 
phase boundary.
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Lithiated phase
Delithiated phase

• Internal strain limits the growth of the 
delithiated domain upon further oxidation. 
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LiMg0.1Mn0.9PO4

LiMnPO4

Improved Kinetics
Electrochemical Studies
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• Mg substitution improves 
electrochemical charge kinetics.

• Mg substitution raises charge 
and discharge potentials. 



Improved Physical Stability
• Internal strain and large 

volume mismatch at the 
phase boundary result in 
crystal decrepitation when Li 
is removed.

• Morphological instability 
contributes to poor phase 
transition kinetics in LiMnPO4.

• Mg substitution dilutes the 
Jahn -Teller ion (Mn3+) in the 
structure and reduces 
volume mismatch.

• Crystals retain physical 
integrity after delithiation.
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Improved Thermal Stability
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• Unlike FePO4, delithiated LiMnPO4 decomposes and releases O2
around 150 oC.
• The reaction with the electrolyte produces a large amount of heat 
similar to that of charged LiCoO2. 



Improved Thermal Stability

• Unsubstituted phosphate 

(x=0) decomposes to 

Mn2P2O7 and releases 

0.25 mole O2 per mole 

phosphate.

• Substituted phosphate 

(x=0.5) decomposes to 

Mn3(PO4)2 and releases 

0.125 mole O2.

• Both Mn2P2O7 and 

Mn3(PO4)2 were formed in 

the samples with 0<x<0.5. 

2LixMgxMn1-xPO4 2xLiMgPO4 + (1-x)Mn2P2O7 + 0.5(1-x)O2

3LixMgxMn1-xPO4 3xLiMgPO4 + (1-x)Mn3(PO4)2 + 0.5(1-x)P2O5 + 0.75(1-x)O2
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XRD of heat-treated 

LixMgxMn(1-x)PO4 crystals: 



Improved Thermal Stability

• Released oxygen and generated heat decrease with the decrease of 
Mn content in the phosphates.
• Total heat evolved: 136 ± 3 kJ per mole of Mn in the phosphates.
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• Layered Li1+xM1-xO2 (M = Ni, Mn and Co) has over 200 mAh/g capacity.  
Structure and ordering scheme key to the performance but poorly understood from 
the studies on aggregated oxide particles.  

• At the single crystallite level, how do the local and long-range orders in the 
oxides correlate to their performance and safety?
• What is the mechanism for oxygen evolution at high voltages? What causes the 
irreversible capacity loss in the material?
• Is there phase transformation during delithiation and relithiation? What are the 
mechanisms? 
• What is the optimum composition?
• What is the optimum particle morphology? 

• Synthesize Li1+xM1-xO2 (M = Ni, Mn and Co) single crystals with controlled 
morphologies.
• Evaluate performance and investigate the effect of Li stoichiometry, transition 
metal ratios, delithiation and relithiation processes (both chemical and 
electrochemical) on local and long-range orders.
• Explore synthesis conditions to produce desired structure and ordering scheme 
for optimum performance and safety. 

Layered Oxides, Li1+xM1-xO2



• Single crystals were synthesized by the molten salt method.
• Particle size and morphology can be controlled by synthesis 
conditions.

Crystal Synthesis



• Plate-shaped crystals of “Li-excess” and “Li-stoichiometric” oxides, 
Li1+x(Ni0.33Mn0.33Co0.33)1-xO2 (NMC333), were prepared.
• x = 0.14 and 0  based on ICP analysis.

Crystal Synthesis

“Li-excess” NMC333 (x=0.14)

400 nm

“Li-stoichiometric” NMC333 (x=0)

300 nm

a



001 ZA

Simulated pattern from P3112
(001 ZA)

Electron Diffraction 
“Li-excess”  NMC333 Crystals



011 ZA

Simulated pattern from P3112
(011 ZA)

• Strong superlattice reflections suggest the presence of superstructures 
with  √3ahex. × √3ahex unit cell.
• Diffraction patterns match the patterns simulated from P3112 cell.

Electron Diffraction 
“Li-excess”  NMC333 Crystals



Electron Diffraction
“Li-stoichiometric” NMC333 Crystals 

001 ZA

Simulated pattern from R-3m

• Lack of superlattice reflections suggests weak or no superstructure.
• Diffraction patterns match the patterns simulated from R-3m cell.



Rietveld Refinements

• For x=0, no additional peaks in 
the range 20 ≤ 2θ ≤ 28.  The 
pattern is indexed with R-3m 
structure. 
• For x=0.14, the pattern is indexed 
with P3112 structure to fit the 
superstructure peaks in the range 
20 ≤ 2θ ≤ 28. 
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Chemical Delithiation 
“Li-excess” NMC333

Li1+x(Ni0.33Mn0.33Co0.33)1-xO2 + yNO2BF4 →
Li1+x-y(Ni0.33Mn0.33Co0.33)1-xO2 + yNO2 + yLiBF4

20 22 24 26 28 30 32 34
2 Theta (deg) 

• Intensity of the superlattice peaks gradually 
decreased upon delithiation. The peaks completely 
disappeared at y=1.
• Phase transition from O3 (R-3m) to P3 (R3m) 
occurred when y>1.
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• Upon delithiation, the unit cell shrinks and then stabilizes in the 
a direction.  It expands and then shrinks in the c direction. 
• The overall cell volume remains nearly constant up to y=1.
• Phase crystallinity decreases with chemical delithiation. 

Chemical Delithiation 
“Li-excess” NMC333



• Upon delithiation, crystals lose physical integrity even when the volume change is 
negligible.
• Morphological evolution indicates the loss of mass upon delithiation, possibly as Li2O. 

y=0.5y=0 y=1

y=1.5 y=2

Chemical Delithiation 
“Li-excess” NMC333



300 nm

001 ZA

y=0.5
• √3ahex. × √3ahex
super cell reflections 
disappear when Li is 
removed from the 
structure.

• The appearance of 
new superlattice 
reflections indicate the 
change of in-plane 
ordering in the 
delithiated crystals. 

300 nm

y=1

001 ZA

Chemical Delithiation 
“Li-excess” NMC333



400 nm

• Crystals were delithiated with 0.5 mole of NO2BF4 and then relithiated 
with 2 mole of LiI.
• Original superlattice reflections reappeared on relithiation, indicating 
the restore of √3ahex. × √3ahex super cell structure.

011 ZA

Chemical Relithiation 
“Li-excess” NMC333



Chemical Delithiation 
“Li-stoichiometric” NMC333

63 64 65 66 67
2 Theta (deg) 

• Phase transition from O3 to P3 occurred 
at oxidation level of y=0.75 instead of 1.
• Cell volume decreased 5.4% at y=1.
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Chemical Delithiation 
Vibrational Spectroscopies
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• FTIR and Raman of 
fresh crystals: 
significant difference 
in local structure due 
to excess Li.

• FTIR of delithiated 
crystals: larger shift 
toward higher frequency 
in x=0 series. 
Consistent with the 
larger decrease in unit 
cell dimension. 
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Collaborations 
• Tom Richardson (LBNL) – Material Synthesis and Characterization

• Clare Grey, Jordi Cabana (Stony Brook) – NMR Spectroscopy

• Heike Gabrisch (U. New Orleans) – TEM study of iron phosphates

• Gerbrand Ceder (MIT) – Theory on hydrothermal synthesized 
crystals

• Martin Kunz, Nobumichi Tamura (ALS), Sumohan Misra (SSRL) –
in situ X-ray diffraction and absorption

• Robert Kostechi (LBNL) – Raman and FTIR Spectroscopy

• John Kerr (LBNL) – TGA and DSC

• Vince Battaglia (LBNL) – ICP

• Marca Doeff (LBNL) – Electrode Fabrication



Future Work
• Olivines:

─ Investigate the effect of size, morphology, surface modifications, other 
cation and anion substituents on rate capability and stability of 
LiMnPO4.

─ Investigate phase transformation mechanism and phase stability of 
mixed transition metal olivine crystals (LiMPO4, M=Fe, Mn, Co and Ni).

• Li1+xM1-xO2:

─ Further analyze the chemical delithiated series – Li and O contents, 
metal ratio distribution on the crystals, the change of ordering, and the 
possibility of proton insertion in the structure.

─ Compare the structural change during electrochemical charge and 
discharge.  Investigate O2 evolution mechanism.

─ Prepare well-formed oxide crystals with other Li content and metal 
ratios.  Investigate the structure and evaluate the performance.

─ Investigate the effect of size and morphology on performance.



Summary
• Delithiated LiMnPO4 has low thermal stability comparable to the 

charged LiCoO2. 

• Mg substitution in LiMnPO4 improves kinetics, physical and thermal 
stabilities of the phosphate. 

• The effect of excess Li on structure and performance of 
LiNi0.33Mn0.33Co0.33O2 (NMC333) crystals has been investigated.

• Structure of “Li-excess” NMC333 is well ordered with √3ahex. × √3ahex
super cells.  In-plane ordering scheme changes upon chemical 
delithiation and restores upon relithiation.  Delithiation causes the 
crystals to disintegrate even with negligible volume change. 

• “Li-stoichiometric” NMC333 lacks the same √3ahex. × √3ahex ordering in 
the structure.  There is a larger decrease in unit cell volume upon 
delithiation. 

• O3 structure transforms to P3 in both samples, but occurs at a much 
higher oxidation state in the “Li-excess” sample. 
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