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Timeline

Overview

e Start date: March 2008

e End date: June 2010 -
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e Percent complete:
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Barriers

e High cost

e Low energy density

e Poor cycle and calendar life
e Abuse tolerance limitations
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Research Objectives:

» To develop fundamental understanding of surface chemistry and bulk cation
distributions on cycling performance and rate capability

» To design positive electrodes with stable electrode-electrolyte interface with
improved cycling performance and rate capability

Research Approaches:

» Probing the surface chemistry of positive electrode materials before and after
cycling using surface-sensitive electron microscopy, X-ray photoelectron
spectroscopy and electron-yield X-ray adsorption spectroscopy.

» Studying the bulk structure of positive electrode materials before and after
cycling using synchrotron X-ray diffraction and transmission X-ray absorption
spectroscopy.

» Correlating surface chemistry and bulk structure information with
electrochemical performance characteristics such as capacity retention and rate
capability to determine the origin of surface instability.




Research Approach Overview
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Milestones FY10

Develop fundamental understanding in the relationship between the
surface chemistry of LiNi, :Mn, :O, (ref. LiCoO,) and rate/cycle
characteristics - ongoing

Apply the fundamental understanding to design and develop stable
surfaces of cycled high-energy cathodes — initiated

Develop angle resolved X-ray photoelectron spectroscopy (ARXPS) to
study the surface chemistry of LiNiy :Mn, 0, and LiCoO, as a function of
depth from surface - ongoing



Technical Accomplishment -
Identify the working principles of surface coatings

Recap: Further evidence
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High-voltage cycling test of low-cost and high-energy cathode

- Results: cycling performance of annealed LiNi, :Mn, :O,
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* Small capacity loss™ 90% after 20 cycles
* High round-trip efficiency > 90% after 20 cycles



Surface chemistry changes after cycling
- XPS Results of cycled annealed LiNi, :Mn, O, electrodes
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Formation of nickel and manganese fluorides in the surface region is confirmed; appears to be
critical for good cycle life



Surface chemistry as a function of depth thickness
XPS — Ar-Sputtered Depth Profile of annealed LiNi, :Mn, :O,
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* The surface region with metal fluorides is about 7nm thick
* The sputtering rate is estimated to be ~ 35 A/min of SiO,



Surface chemistry as a function of depth thickness

XPS — Ar-Sputtered Depth Profile of annealed LiNi, :Mn, :O,
20 cycles, 2.5-4.6 V
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The surface of cycled electrodes is rich in Mn relative to Ni (~10 nm), which is not the
case for pristine electrode with has similar amounts of Ni and Mn.



Mn K-edge Transmission (T) and Electron Yield (EY) XANES of
Cycled Annealed LNi, :Mn, .O, Electrodes
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At the bulk level (transmission): no noticeable changes in the Mn oxidation state

At the surface level (electron yield): lowered Mn oxidation state, which was
pronounced after cycling to 5.0 V. This observation is consistent with metal
fluoride formation by XPS.



Ni K-edge Transmission (T) and Electron Yield (EY) Fourier
Transforms of Cycled Annealed LNi, :Mn, :O, Electrodes
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The bulk: no changes to 4.6 V but more layered upon cycling to 5.0 V

The surface: the formation of surface Ni fluorides. which was suggested by XPS.




Surface fluorides is important for cycling performance
- What is important for rate capability?

S ' ' ' ' C1s \ Annealed
Quenched 3
s \ At 55 °C :
S N\ >
3 7]
11 \ ' l _§ :
2l 2C 1c//1/250 ] = | /
_ 8C 4C 1/5 C \ e
1 . \ : 1/2 C Carbonate C-H
0 50 100 150 200 250 292 288 284 280
Q (mAh/g) Binding Energy (eV)
5 , ——
1/2C
1/5C O 1SCarbonate &% Annealed
4 1/25 C1 = \
S | 8
~ 3t > Quenched
w | Annealed A
2F R 2 Bulk
o 1C 1< | u
] . . . 2C
0 50 100 150 200 250
Q (mAh/g) 536 534 532 530 528 526

Binding Energy (eV)

Reduction of surface carbonates upon annealing at 700 °C for 12 h
improves rate capability



Transmission Ni K-edge XANES and Fourier Transforms
of LiNiy :Mn, O, — The Influence of Annealing
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Changes in the oxidation state and local structure of Ni2*
as a result of annealing are small



Transmission Mn K-edge XANES and Fourier Transforms
of LiNi, :Mn, O, — The Influence of Annealing
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Changes in the oxidation state and local structure of Mn**
as a result of annealing are small



Summary of local structure parameters of LiNi, :Mn, :O,
— The Influence of Annealing

Quenching X-Y pair N R (A) sigma? (10-3A2)
Temperature

1000 °C quench Mn-O 6 1.904(3) 5.3(4)
Mn-Ni/Mn | 5.0(4) 2.890(3 5.1(6)
Ni-O 6 2.054(6) 6.5(7)
Ni-Mn/Ni 6.6(7) 2.930(5) 6.4(7)
1000 °C quench + 12 Mn-O 6 1.908(3) 4.0(3)
h anneal at 700°C | Mn-Ni/Mn | 5.3(5) 2.893(3) 4.5(6)
Ni-O 6 2.058(7) 5.8(8)
Ni-Mn/Ni 6.9(8) 2.931(5) 6.3(8)
1000 °C quench + 60 Mn-O 6 1.910(3) 4.5(3)
h anneal at 700°C | Mn-Ni/Mn | 5.2(4) 2.894(3) 5.0(5)
Ni-O 6 2.057(3) 5.9(5)
Ni-Mn/Ni 6.8(4) 2.932(2) 6.3(4)

Uncertainties are given in parenthesis

Annealing =>

No change in the
local structure

Slightly higher order
for Mn-O bonds



Phase segregation also influences rate performance
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v'The rate-capability was improved by reducing phase segregation



XPS to probe the surface carbonate —
LiNi, :Mn, O, synthesized at — 900 °C, 950 °C and 1000 °C
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/ surface oxygen

204 202 200 288 286 284 282 536 534 532 530 528 526

Binding Energy (eV) Binding Energy (eV)
= C1s:comparable amount of surface = 0 1s: O lattice peak narrowing with
carbonate for all temperatures. increasing temperature

All temperatures have comparable amount of surface carbonate
=> further support that phase segregation is the dominating factor



Angle Resolved-XPS to probe surface chemistry/composition
Test case, Bare LiCoO, vs. “AlIPO,” coated LiCoO,
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v'Obtain chemical and composition as a function of depth from the surface
without Ar-ion beam induced damage to the sample



Collaboration with S.H. Kang and M.M. Thackeray
Li; 2Nig 2sMng 750, (300 °C)
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Collaboration with S.H. Kang and M.M. Thackeray

%" The cycled sample shows mostly
‘. Il the Spinel Fd-3m structure.

&= Some crystal contain
dislocations. With very large
Burgers vector of a/2[111]. This
might be associated with oxygen
= loss during cycling.




Summary

Probing the effects of surface chemistry and
cation distribution on the rate capability of

Identifying the key criteria toward better cycle
life upon cycling for low-cost and high-energy

LiNiy sMn, O,

The rate capability was improved by reducing
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Ongoing and Planned Activities

e Continue to examine the role of surface chemistry on cycle life and rate
capability of low cost and high energy positive electrode materials such as

LiNi, sMn, O, using angle-resolved XPS and electron yield XAS:
* Examine variations in the surface chemistry / composition of annealed LiNi, ;Mn, O, vs.

quenched LiNi, ;Mn, .0, powders.

* Examine variations in the surface chemistry of cycled LiNi, :Mn, :O, electrodes. In this
case, the electrodes will be transferred from an Ar filled glove box to the analysis
chamber of the XPS system without exposure to ambient conditions.

* Continue to examine the bulk structure of annealed and quenched

LiNi, sMn, O, and their cycled electrodes using transmission XAS:

* We will use temperature dependent measurements in order to reduce the correlation
between the disorder and the coordination number in order to reduce the
uncertainties in the local structure parameters.

* Explore the possibility of conducting the ARXPS measurement using hard X-rays at a
synchrotron radiation facility . Using hard X-rays can increase the depth of analysis

several folds relative to that when soft X-rays are used such Al and Mg K, ., X-rays.
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