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Overview
Timeline

 Start: Oct 2006
 Finish: Sept 2009 

(extended to 2011)
 60% Finished
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Budget
 Total Project funding

− DOE: $1,450K
− Industry sponsors: $1,450K

 Funding received in FY09
− $500K

 Funding received in FY10
− $500K

Barriers
 Increased back pressure and fuel 

penalty
 Lack of effective regeneration 

strategies to reduce input energy 
and deal with low exhaust 
temperature

 Durability of the system, including 
filter materials

 Sensor technology

Partners
 Corning and Caterpillar
 University of Illinois – Chicago
 University of Wisconsin – Madison
 Iljin Electric Co.



Relevance and Objectives 
 Existing DPF systems still need to improve filtration/regeneration 

efficiencies and pressure drops.
 DPF systems need efficient regeneration strategies, which can control 

thermal run-away.
 Accurate measurement of heat release is needed.

 A real-time DPF control/management system is required for developing 
an advanced DPF system with on-board diagnostics (OBD) capability.

 Predict the transient heat release in DPF regeneration.
– Derive equations for the oxidation rate of diesel particulates
– Measure the amount of heat release from the oxidation

 Characterize pressure drops of modified DPF membranes with soot 
loading.

 Develop a real-time DPF control/management system that can 
measure the instantaneous mass of soot deposits in a DPF, control 
DPF regeneration, and provide OBD signals for DPF operation.
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Approach – Overall

4

DPF experiments for filtration, 
regeneration, µ-imaging

Soot oxidation with TGA, 
DSC

PM mass, filtration efficiency
with TEOM

Numerical modeling

Caterpillar C7 Diesel

TGA

DSC



Approach – Year 3
Experimental procedure
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Diesel PM samples

1.9L Diesel 
Engine DPF Test System

TGA

DSC
TGA DSC

Residues

Bisected non-catalyzed
Cordierite membrane

Soot deposit



Technical Accomplishments:
Transient heat release evaluated from oxidation 
experiment with diesel soot will help DPFs control 
thermal runaway

 Transient heat release (   , kW)  = 
Oxidation rate of soot (-dm/dt, g/sec)  x

Specific heat-release from oxidation of soot (q, kJ/g)
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M=M0 - Msoc



Oxidation rate of graphite was first evaluated to 
compare with oxidation behaviors of diesel soot
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Progressive heating on samples enabled us to 
accurately evaluate the activation energy

Ea=168.2 kJ/mol
A=6.49 x 107/sec
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Oxidation of diesel soot shows two different 
reaction zones

 The content of SOCs in diesel PM turned out to be 20   0.05 wt%.
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Oxidation rate equations of diesel soot were 
derived with accurately evaluating the magnitude 
of kinetic parameters 
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Mass data calculated by the equations concur 
with experimental data
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Specific heat release from oxidation of diesel 
soot was evaluated in consideration of soluble 
organic compounds absorbed in samples

Quantity
Sample 

#1
Sample 

#2
Initial mass, Mo (mg) 3.725 4.197

Residual mass, 
Mr (mg)

0.315 0.323

Mo - Mr 3.410 3.874

Heat release (kJ/g) 17.25 14.67 
SOC mass, 
Msoc (mg)

0 0.84

Soot mass 
(Mo - Mr – Msoc)

3.410 3.034 

Heat release by soot 
(kJ/g)

17.25 17.21

Heat release by SOC 
(kJ/g)

- 5.50
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Evaluation of transient heat release under diesel-
like environment is now promising

 Transient heat release during DPF regeneration in air

 Diesel soot oxidation experiments will be conducted with various 
compositions of gaseous emissions in consideration of regeneration 
conditions in practical DPF systems.

– NOx, HC, CO, CO2, H2O, etc.



k : permeability, ζ : inertial loss coefficient
kapp: apparent permeability

• Conventional wall-flow DPF

Pressure Drop Model: Total pressure drop has been 
defined in a quadratic form of flow rate

N : # of incoming (or outgoing) flow channels
µ: Viscosity, ρ: density, F: Pre-factor 
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Permeability (k, kapp) and inertial loss coefficients (ζ, 
ζ∗) can be determined by a flow bench experiment
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Pressure drop through the wall is a major 
contributor to total pressure drop in modified DPFs
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An optimum plug position was determined to be 
1/2PP for given membrane physical properties
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Pressure drops appeared to be higher with the 
modified DPF membrane for the tested period. 
However …



The modified DPF membrane allowed a fair 
amount of soot loading in the front-plug channels  
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Rear-plug channel
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Front plugs
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Rear plugs

~ 35% ~ 65%
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Incoming flow
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rear section



Current status of DPF experiment

 DPF experiments have not been able 
to be performed due to no extra engine 
dyno facility for CAT®’s C7 engine 
(FY09). 

 The DPF test bench is being set up 
with the existing CAT®’s single cylinder 
diesel engine.

 A DPF regeneration system for 
experiments has been designed.

 A custom-designed electrical heater 
unit has been developed for 
regeneration in collaboration with  
ILJIN Electric Co.
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An invention disclosure has been filed at Argonne 
under this CRADA

 Industry has developed DPF systems, but their smart control systems 
are unavailable.

– Detailed mathematical theories have been derived to define pressure drops 
in DPF (accurate).

– Transient mass of soot deposits in DPF can accurately be measured in real 
time during engine/vehicle operation modes (transient, real-time).

– No additional exotic hardware, such as soot sensors, is needed (cost 
effective).

– DPF monitoring on the OBD system is capable.
– It works for all engine classes from light-duty to heavy-duty (diverse in 

application).
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Future Work

 Perform soot oxidation experiments with various flue gases (NOx, HC, CO, 
CO2, H2O) and measure oxidation rates and heat release.

 Continue to characterize the pressure drops in modified membranes with 
extended soot loading time and evaluate filtration efficiency at various engine 
operating conditions.

 Conduct filtration experiments with catalyst-coated membranes to measure 
filtration properties.

 Conduct regeneration experiments.
– Provide optical images of thermal reaction in regeneration.

 Analyze morphology and nanostructures of soot particles partially oxidized 
during TGA experiment.

 Continue to validate the invention with CAT® engines and discuss for its 
patenting with the industry sponsor.
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Summary
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 Oxidation behaviors of diesel soot and graphite were accurately characterized in 
air.

– Oxidation of diesel soot typically revealed two different oxidation zones: a 
constant oxidation rate zone and an exponentially decreasing zone, 
whereas

– Commercial graphite represents an exponentially changing oxidation rate 
only.

 Transient heat release of diesel soot was evaluated in air.
– Transient oxidation rates of diesel soot.
– Specific heat release of both diesel soot and SOCs

: Dry soot presented an approximately three (3) times higher degree of heat 
release than SOCs did. 

 The plug position of modified DPF membranes was optimized, showing 
promising results in total pressure drop with soot loading. 

 An invention disclosure has been filed.
– Intelligent DPF Control and Management System.
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