Overview

Timeline

• Project provides fundamental research to support DOE/industry fuel technology projects
• Project directions and continuation are evaluated annually

Barriers/Targets

• Technical Barrier: Chemical kinetic models for fuel components and their mixtures are a critical need to enable optimization of fuel formulations for high engine efficiency and very low emissions

• Targets: Meeting the targets below relies heavily on predictive engine models for optimization of fuel formulations and engine design:
 • Potential for replacement of petroleum, greater than 5% by 2018
 • Increase heavy duty engine thermal efficiency to 55% by 2018.
 • Attain 0.2 g/bhp-h NOx and 0.01 g/bhp-h PM for heavy duty trucks by 2018

Budget

Project funded by DOE/VT:
• FY09: 325K
• FY10: 500K

Partners

• Project Lead: LLNL – W. J. Pitz (PI), C. K. Westbrook, M. Mehl, M. Sarathy
• FACE Working group (Industry, National Labs)
• Part of Advanced Engine Combustion (AEC) working group:
 • 15 Industrial partners: auto, engine & energy
 • 5 National Labs & 2 Univ. Consortiums
• Sandia: Provides HCCI Engine data for validation of detailed chemical kinetic mechanisms
Objectives and relevance to DOE objectives

- Objectives:
 - Develop predictive chemical kinetic models for components and surrogate mixtures to represent advanced petroleum-based and non-petroleum based fuels. These models can be used to optimize fuel formulations in advanced combustion engines for maximum engine efficiency and very low pollutant emissions, thereby allowing the utmost petroleum displacement.

- FY10 Objectives:
 - Develop a chemical kinetic model for actual biodiesel components:
 - Methyl stearate
 - Methyl oleate
Milestones

✓ March, 2010
 Develop chemistry model for actual Biodiesel component: Methyl stearate

- September, 2010
 Develop chemistry model for actual Biodiesel component: Methyl oleate

- September, 2010 Provide technical support for the Fuels for Advanced Combustion Engines (FACE) working group
Approach

- Develop chemical kinetic reaction models for each individual fuel component of importance for advanced petroleum based and non-petroleum based fuels

- Combine mechanisms for representative fuel components to provide surrogate models for
 - Advanced petroleum based fuels
 - Non-petroleum based fuels:
 - Biodiesel and new generation biofuels
 - Fischer-Tropsch (F-T) fuels
 - Oil sand derived fuels

- Reduce mechanisms for use in CFD and multizone HCCI codes to improve the capability to simulate in-cylinder combustion and emission formation/destruction processes in engines

- Use the resulting models to simulate practical applications in engines, including diesel, HCCI and advanced combustion engines, as needed

- Iteratively improve models as needed for applications
Technical Accomplishment Summary

- Developed chemical kinetic model for actual biodiesel component: methyl stearate:

- Developed a reduced model for methyl decanoate (a biodiesel surrogate compound), valid from low to high temperatures:

- Developed preliminary chemical kinetic model for actual biodiesel component: methyl oleate:

- Submitted review paper on Diesel surrogate fuels for the FACE working group:

Soybean and rapeseed derived biodiesel has only 5 principal components

Methyl Palmitate (C16:0)

Methyl Stearate (C18:0)

Methyl Oleate (C18:1)

Methyl Linoleate (C18:2)

Methyl Linolenate (C18:3)
Assembled chemical kinetic model for two of the five main components in biodiesel derived from soybeans or rapeseed oil

methyl stearate

methyl oleate

Built with the same reaction rate rules as our successful methyl decanoate mechanism

Approximately
3,500 species
17,000 reactions
Methyl stearate or methyl oleate mechanisms simulate well the oxidation of rapeseed-derived methyl esters

Jet-stirred reactor at 10 bar, $\phi=0.5$

Symbols: Experimental data of Dagaut et al. 2007 on rapeseed methyl esters
Methyl stearate is more reactive than methyl oleate in low T region

Double bond inhibits low temperature chemistry
Validating fundamental reaction paths in the biodiesel mechanisms: C5 methyl esters

Experimental data: Yang, Cool, Hansen, 2010
We are developing the capability to simulate the IQT which predicts derived Cetane number (Flowers, Aceves, Chen)

Objectives:

- Extend multi-zone model to stratified DI cases in collaboration with NREL and UC Berkeley
- Ensure chemical kinetic models can predict derived Cetane number measured in IQT
- Characterize fuel chemistry under diesel-like conditions in the IQT
Developed a reduced model for methyl decanoate, a biodiesel surrogate compound

Mechanism reduced:
3012 => 648 species
8820 => 2998 reactions

Mechanisms are available on LLNL website and by email

http://www-pls.llnl.gov/?url=science_and_technology-chemistry-combustion

Combustion Chemistry

Go Directly to Mechanisms...

The central feature of the Combustion Chemistry project at LLNL is our development, validation, and application of detailed chemical kinetic reaction mechanisms for the combustion of hydrocarbon and other types of chemical fuels. For the past 30 years, our group has built hydrocarbon mechanisms for fuels from hydrogen and methane through much larger fuels including heptanes and octanes. Other classes of fuels for which models have been developed include flame suppressants such as halogenorganophosphates, and air pollutants such as soot and oxides of nitrogen and sulfur.

Reaction mechanisms have been tested and validated extensively through comparisons between computed results and measured data from laboratory experiments (e.g., shock tubes, laminar flames, rapid compression machines, flow reactors, stirred reactors) and from practical systems (e.g., diesel engines, spark-ignition engines, homogeneous charge, compression ignition (HCCI) engines). We have used these kinetic models to examine a wide range of combustion systems.
Collaborations

- Our major industrial collaboration is via the DOE working groups on HCCI and diesel engines.
 - All results presented at Advanced Engine Combustion Working group meetings (Industry, National labs, Univ. of Wisc., U of Mich.)
 - Collaboration with Magnus Sjöberg and John Dec at Sandia on HCCI engine experiments on many fuels
- Second interaction is participation with many universities
 - Collaboration with Univ. of Toronto on methyl decanoate
 - Collaboration with Curran at National Univ. of Ireland on many fuels
 - Collaboration with Prof. Lu, U. of Conn. on mechanism reduction
 - Collaboration with Prof. Oehlschaeger at RPI on large alkanes
- Participate in Fuels for Advanced Combustion Engines (FACE) Working group (Industry, National Labs)
Special recognitions and awards during FY10

Charles Westbrook:
- Wilhelm Jost Memorial Lectureship from the Deutsche Bunsengesellschaft für Physikalische Chemie
- President of the Combustion Institute

William J. Pitz:
- Best paper of the year award 2009: Combustion Society Japan

S. M. Sarathy:
- Postdoctoral Fellowship from Natural Sciences and Engineering Research Council of Canada
Activities for Next Fiscal Year

- Develop detailed chemical kinetic models for the other remaining soybean or rapeseed derived methyl esters:

 - methyl palmitate
 - methyl linoleate
 - methyl linolenate

- Develop detailed chemical kinetic model for a new biofuel fermented from sugar:

 - (iso-pentanol)

 Biofuel targeted by JBEI (U.S. Department of Energy Bioenergy Research Center)

- Develop mechanisms for butanols (4 isomers)
Summary

- **Approach to research**
 - Continue development of surrogate fuel mechanisms for non-petroleum based fuels and advanced petroleum based to obtain predictive models that can optimize fuel formulations

- **Technical accomplishments:**
 - Developed chemical kinetic model for methyl stearate, actual biodiesel component

- **Collaborations/Interactions**
 - Collaboration through AEC working group and FACE working group with industry. Many collaborations with national labs and universities

- **Plans for Next Fiscal Year:**
 - Develop chemical kinetic models for 3 remaining biodiesel components and new biofuel, iso-pentanol