

Advanced Collaborative Emissions Study (ACES)

Cooperative multi-party effort to characterize emissions and possible health effects of new advanced heavy duty engine and control systems and fuels in the market 2007 – 2010.

DOE Merit Review June 2010

<u>D. Greenbaum¹</u>, <u>J. Mauderly²</u>, C. Tennant³, R. Shaikh¹, M. Costantini¹, A van Erp¹, B. Bailey³

¹Health Effects Institute (HEI), ²Lovelace Respiratory Research Institute, and ³Coordinating Research Council (CRC)

This presentation does not contain any proprietary or confidential information

ID # ACE044 NETL Agreement 13919

Project Overview

Phases:

- 1. 2007 Engine Emissions Characterization (Southwest Research Institute® (SwRI®))
 - CRC Technical Leader
- 2. 2010 Engine Emissions Characterization
 - CRC Technical Leader
- 3. 2007/2010 Engine Health Effects Testing (Lovelace Respiratory Research Institute (LRRI)
 - Short Term biological screening and Long-Term Health Effects Test on 2007 Engines
 - HEI Technical Leader; CRC Technical Monitor

Funding

Overall Project: \$15.5 million

- Total DOE Contract: \$5.95 million (Contractor Share: \$3.98 million)
 - FY 09 DOE Funding: \$600,000
 - FY 10 DOE Funding: \$600,000 (planned)

Partners

- DOE OVT and NETL
- Engine Manufacturers Association (EMA)
- US Environmental Protection Agency (EPA)
- California Air Resources Board (ARB)
- American Petroleum Institute (API)
- Aftertreatment Manufacturers
- Coordinating Research Council (CRC)

Overall Project Timeline

Slight delays in Phase 2, 3

	2	007	,	20	08		20	09		20	10		20	11		20	12	
Phase 1: Testing																		
Phase 1: Analysis & Reporting																		
Phase 2: Testing																		
Phase 2: Analysis & Reporting																		
Phase 3: Facilities Development																		
Phase 3: Animal Biological Screening and Health Testing																		
Phase 3: Analysis & Reporting																		

RELEVANCE: Evaluating Emissions of Advanced Technology Diesels

- DOE OVT MYPP Advanced Combustion R and D: New Generation diesel engines are highly fuel efficient and a likely significant contributor to enhanced fuel economy for the next 15 – 20 years IF they gain wide acceptance
- The combination of advanced-technology, compression-ignition engines, aftertreatment systems, reformulated fuels and reformulated oils developed to meet the 2007/2010 emission standards will result in substantially reduced emissions.
- Substantial public health benefits and enhanced public acceptance and use are expected from these reductions.
- With any new technology it is prudent to conduct research to confirm benefits and to ensure that there are no adverse impacts to public health and welfare.

Overall Objective

• to characterize emissions and possible health effects of new advanced heavy duty engine and control systems and fuels in the market 2007 – 2010

HEI ACES Oversight Committee

Mark Utell, Chair	Mark Utell, Chair University of Rochester		University of Minnesota			
Richard Albertini	Richard Albertini University of Vermont		Consultant, Former NTP Director			
Ken Demerjian	SUNY Albany	Gunter Oberdorster	University of Rochester			
Helmut Greim	Technical University of Munich	Charles Plopper	University of California, Davis			
Uwe Heinrich	Fraunhofer Institute	Howard Rockette	University of Pittsburgh			
Tom Kensler	Johns Hopkins University	James Swenberg	University of North Carolina, Chapel Hill			

Partners: CRC ACES Panel

Reynaldo Agama	Reynaldo Agama Caterpillar		Ford Motor Company
James Ball	Ford Motor Company	Mani Natarajan	Marathon Petroleum Company LLC
Nicholas Barsic	Nicholas Barsic John Deere		US Department of Energy / NETL
Steve Berry	Volvo	Robert Okamoto	California Air Resources Board
Steven Cadle	General Motors R&D Center	Charles Schleyer	ExxonMobil
Timothy French	Engine Manufacturers Association	Shirish Shimpi	Cummins
Thomas Hesterberg	International	Joseph Somers	US Environmental Protection Agency
Donald Keski-Hynnila	Detroit Diesel	Chris Tennant	CRC
Chris Laroo	US Environmental Protection Agency	Steve Trevitz	Volvo
Douglas Lawson	National Renewable Energy Laboratory	Urban Wass	Volvo
Hector Maldonado	California Air Resources Board	Rashid Shaikh	Health Effects Institute

ACES Phase I Approach and Objectives

- Quantify the significant reduction in both regulated and unregulated emissions from advanced diesel engines,
- Provide regulated and unregulated emissions for this new engine technology,
- Provide initial guidance for ACES Phase 3 health study using the regulated and unregulated emissions information from ACES Phase 1

CAT® C13, by Caterpillar

Cummins ISX, by Cummins

DDC Series 60, by Detroit Diesel

Mack MP7, by Volvo ⁵

Summary – Phase 1 Results

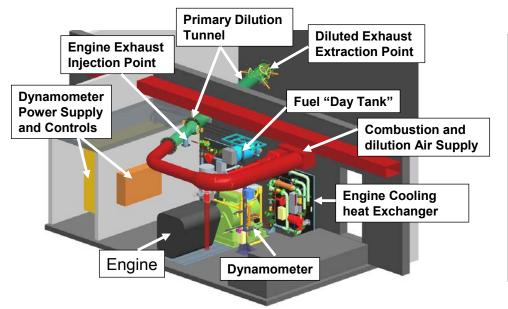
- Regulated PM, CO, and NMHC emissions were at least 90% below the 2007 standard, and NO_x was 10% below standard
- Most unregulated emissions at least 90% below 2004 technology
- Average NO₂ emission of 0.68 g/hp-hr was 2 to 7 times higher than the emissions from 2004 engines
 - However, 2010 engine technology NO_x limit of 0.20 g/hp-hr will force NO₂ emissions to be substantially lower than both 2007 and 2004 technology engines
- Particle number emissions <u>average</u> was at least 90% below 2004 technology engines, even when DPF regeneration occurred
- Elemental carbon represented only 7 % of total PM mass, and the hydrated sulfuric acid determined from measured sulfate was the dominant PM component for the 16-Hour Cycle, 70 percent of total PM mass
- The final report issued June 30, 2009

ACES PHASE 2: 2010 Compliant Engines Approach and Objectives

- 2010 engines will offer substantial improvements in NOx emissions
- Phase 2 will conduct both Emissions Characterization and some possible Health Testing in 2010 engines
- 2010 technology has evolved in multiple directions and, given credits, will not meet the specific requirements by that date
- CRC initiating planning with manufacturers, agencies, other sponsors for start in early 2011

ACES PHASE 3 Health Bioscreening Approach and Objectives

Phase 3A: Characterization of emissions and exposure atmospheres


Phase 3B: Conduct of animal studies

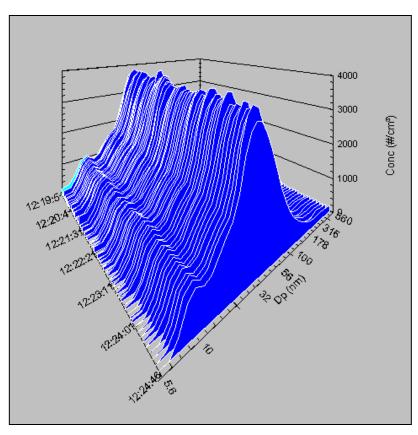
DOE Funding:

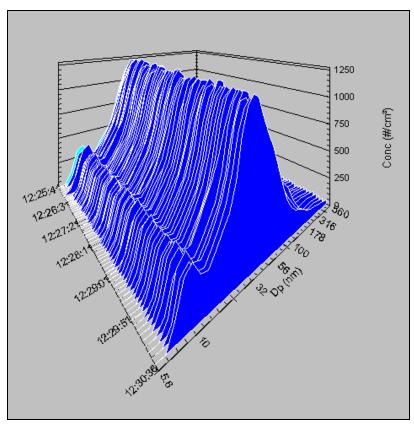
- Characterization of animal exposures
- 3 month mouse pulmonary bioscreening

EPA Funding:

- Long-term rat carcinogenesis bioassay
- Pulmonary bioscreening at 1, 3, 12 & 24 mo

PHASE 3A

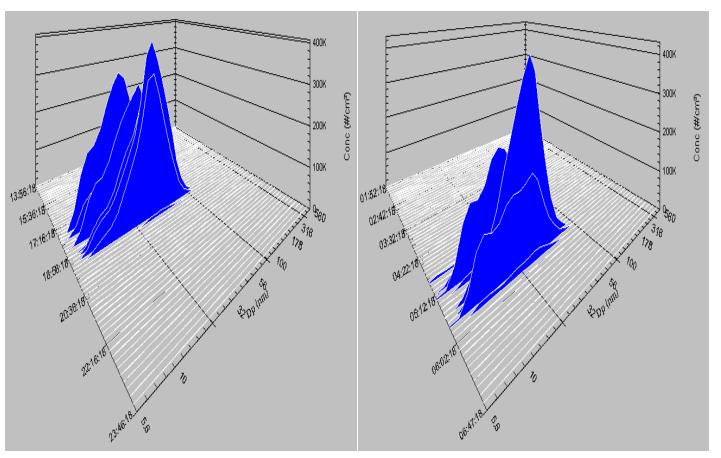

- 2007-compliant "engine B' " (selected from four candidates)
 - Installed at LRRI in facility created under preceding contract
 - Confirmed that engine/control systems met performance criteria


Steady-state (SS) and Federal Test Procedure (FTP) cycles 16-hr ACES cycle (4 repeats of 4 hr cycle with cold start)

- Evaluated diluted emissions in empty animal chamber, and compared to SwRI results (using same fuel)
 - Emissions = exhaust + crankcase blow-by
 - FTP, SS modes 1, 3 & 5, ACES cycle
 - Constant pressure primary dilution tunnel
- Determined dilutions required to meet targets set by HEI
 - Dilutions set to achieve 4.2, 0.8 & 0.1 ppm NO₂
 - Dilutions ≈ 40:1, 210:1 & 1680:1
- Characterized chamber atmosphere in detail
- Evaluated chamber temperatures & operating reliability

THE EXPOSURE SYSTEM HAS LITTLE EFFECT ON PARTICLE SIZE DISTRIBUTION

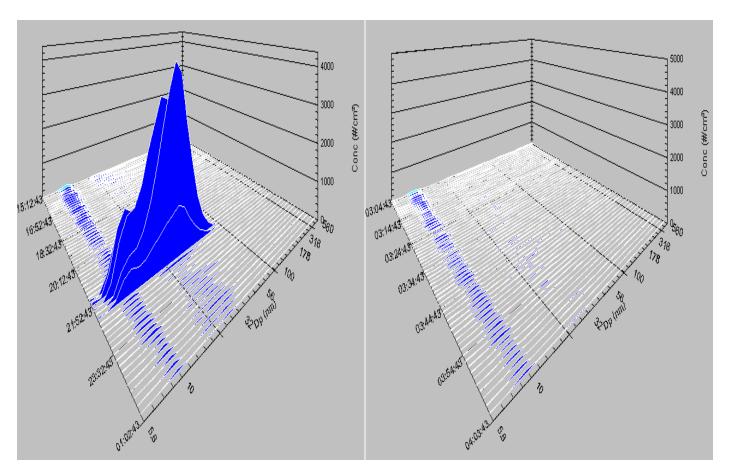
Particle number vs diameter with time during 75% throttle at 1800 rpm



Primary Dilution tunnel

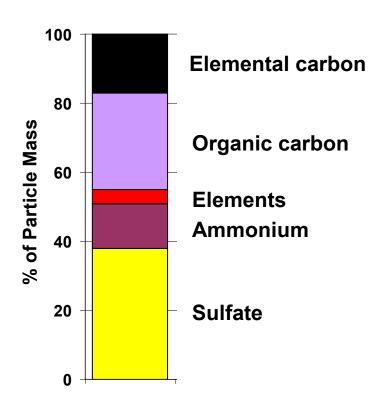
High Level Exposure Chamber

EFFECT OF PARTICLE TRAP REGENERATION

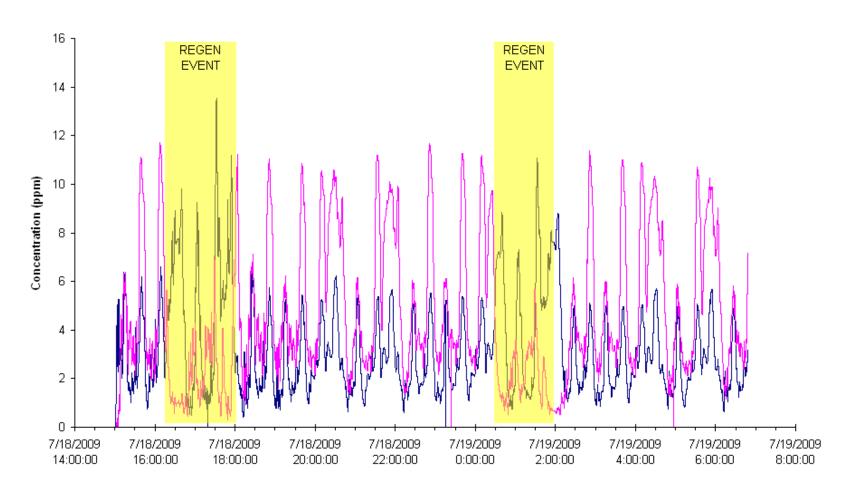

- Very little PM is emitted except during regeneration
- Regeneration occurs twice during 76% of 16-hr cycles, once during 24%

Two regenerations during single 16 hr cycle at high exposure level

EFFECT OF PARTICLE TRAP REGENERATION


- Very little PM is emitted except during regeneration
- Regeneration occurs once during 24% of 16-hr cycles, twice during 76%

One regeneration during single 16 hr cycle at <u>low</u> exposure level


PARTICLE COMPOSITION

Measured in high level chamber without animals



EFFECT OF REGENERATION ON GASES

- NO ↑ and NO₂ ♥ during regeneration - other gases are affected less

NO and NO₂ in high level chamber on day with 2 regenerations

Engine & Fuel Rack

Engine Control Room

Dynamometer & heat exchanger

Adjusting Dilution

Instrumentation in Exposure Room

Examining Mouse

Checking & Cleaning Chambers

Checking Identity of Mouse

MOUSE BIOSCREENING STUDY

Expose 132 mice/group 16 hr/day, 5 days/wk for 13 weeks
 C57BI/6

Three dilutions of whole emissions + clean air controls

Target mean NO₂ of 4.2, 0.8 & 0.1 ppm

Commercial fuel from local supplier (Chevron)

Engine lube oil same as at SwRI (Lubrizol)

Engine maintenance per mfg. direction

40 mice/group allocated for evaluations at 1 and 3 months

Bronchoalveolar lavage Cell proliferation

Hematology* Serum chemistry*

Histopathology *3 mo only

 80 mice/group allocated for evaluations at 1 & 3 months by 5 ancillary studies

Blood and tissue collections

STATUS: 4 wk evaluations completed

13 wk evaluations scheduled for late May

RAT BIOSCREENING STUDY

- Expose 280 rats/group 16 hr/day, 5 days/wk for 24-30 months
 Harlan HsdRccHan:Wist (Wistar)
- Three dilutions of whole emissions + clean air controls

 Same dilution targets as for mice (4.2, 0.8 & 0.1 ppm NO₂)
- 200 rats/group committed to long-term carcinogenesis bioassay

 Expect ~60+% survival to 30 mo
- 80 rats/group allocated for evaluations at 1, 3, 12, & 24 months

Bronchoalveolar lavage Cell proliferation
Hematology* Serum chemistry*

Pulmonary function* Histopathology

*Not measured at 1 mo

Blood and tissue collected from same rats for 5 ancillary studies

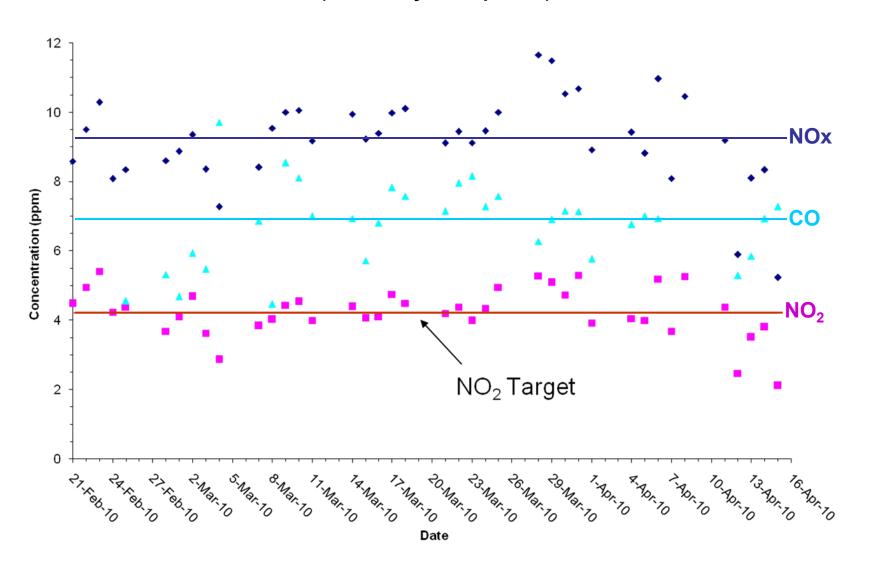
STATUS: Pending approval to order rats

SCHEDULE

Began mouse exposures (3 blocks) 2/22 – 3/8/10 3/22 – 4/510 1 mo mouse evaluations 5/24 - 6/7/10 3 mo mouse evaluations 5/17 – 5/31/10 **Began rat exposures (3 blocks)** 6/14 – 6/28/10 1 mo rat evaluations 8/16 - 8/30/10 3 mo rat evaluations 12/10 Submit report on short-term results 5/11 1 yr rat evaluations 5/12 2 yr rat evaluations 11/12 2.5 yr termination of surviving rats (est. 50-60% survival) 5/13 Submit report on all results

EXPOSURE ATMOSPHERES

(from 40 daily measurements 2/22 - 4/15/10)


Gases (ppm)	Hi <u>Mea</u>	gh <u>n</u> SD	Me <u>Mear</u>	dium <u>SD</u>	Low <u>Mean</u> <u>SD</u>			
(NO ₂ target)	4.2		8.0		0.1			
NO ₂	4.19	0.74	0.87	0.19	0.10	0.04		
NO	5.06	0.67	0.93	0.21	0.10	0.05		
NOx	9.25	1.34	1.80	0.39	0.19	0.08		
CO	6.9 1.1		nmd*		nmd			
THC	0.4	0.3	n	md	nn	nd		
CO ₂	3818	263	nmd		nmd			
PM (μg/m³)								
Inlet filter	9	3	3	2	1	1		
Chamber filter	38	20	43	59	34	17		

*not measured daily

The first detailed characterization is underway.

VARIABILITY OF GASES AT HIGH LEVEL

(first 40 days of exposure)

SUMMARY

- The study is progressing smoothly, and according to protocol
- No significant difficulties have been encountered with the engine or exposure systems
- All operational parameters have been well within protocol limits
- Cumulative mean NO₂ concentrations are on or acceptably close to target. Although variability is similar to that in previous long-term NO₂ studies, the variability relative to mean is substantial at these low concentrations.
- The mice have apparently tolerated the exposure well to date
- No results are yet final, and we offer no speculation about potential exposure-related outcomes
- Reporting of shorter-term exposure results is expected to enter review in early 2011

For further information, contact:

Maria Costantini

Principal Scientist

Health Effects Institute

mcostantini@healtheffects.org

617-488-2302

Chris Tennant

Deputy Director

Coordinating Research Council

ctennant@crcao.org

678-795-0506 x105

