Low Temperature Combustion Demonstrator for High Efficiency Clean Combustion

DOE Contract: DE-FC26-05NT42413

DOE Technology Development Manager: Ken Howden
NETL Project Manager: Samuel Taylor
Program Manager: William de Ojeda, Navistar

DOE MERIT REVIEW
WASHINGTON, D.C.
10 June 2010

National Energy Technology Laboratory
Department of Energy

Project ID ACE043

This presentation does not contain any proprietary or confidential information
• Project Overview
• Statement of Project Objectives
 – Project Timeline
• Barriers
• Collaborations and Partnerships
• Approach
• Accomplishments
 – Summary of Previous deliverables
 – Present deliverables:
 • Extension of Efficient LTC operation
 • Variable Valve Actuation
 • Fuel formulation impacts
• Future Work – Proposal
• Summary
Goals and Objectives
- Apply Low Temperature Combustion (LTC) to a production MD Diesel Engine
- Demonstrate EPA 2010 emissions without NOx after-treatment
- Improve BSFC by 5% over base engine

Barriers
- Overcome combustion stability of LTC due to high EGR use
- Lack of fundamental understanding of the LTC combustion process
- Insufficient combustion diagnostic technologies that can be integrated onto production ECU

Budget
- Total Project Funding: DOE: $4,021,234
 Contractor: $5,153,881
- DOE Funding Received in FY2009: $555,000
 Navistar Funding: $850,000
- DOE Funding Planned for FY2010: $460,000
 Navistar Funding: $567,000

Partners
- Navistar, controls system, engine testing
- UCB, combustion detection
- LLNL, CFD and chemical modeling of fuel spray and combustion
- Siemens, fuel Injector design and procurement
- ConocoPhillips, fuel formulation and supply
- BorgWarner, turbocharger system design and procurement
- Mahle, piston design and procurement
STATEMENT OF PROJECT OBJECTIVES

1. **Demonstrate the application of LTC on a MD Diesel Platform**
 - Target 2010 emissions without NOx after-treatment
 - Minimize soot (target 2007MY DPF loading requirements)
 - Improve brake thermal efficiency to 5% over MY2007 baseline
 - Generate technology in project to be capable for production
 - Baseline engine is the Navistar’s EPA compliance MY2007 6.4L V8 engine

2. **Develop enabling technologies**
 - Charge air and EGR system designs
 - Combustion feedback Control
 - Variable Valve Actuation System

3. **Technology integration roadmap on engine platform**

4. **Validate program under a present fuel variability**
PROJECT TIMELINE

<table>
<thead>
<tr>
<th>Phase</th>
<th>Budget Period</th>
<th>Details</th>
</tr>
</thead>
</table>
CFD parametric studies |
| II. Development of Technologies and Engine Build | June 2006 – May 2007 | Boost System Procurement
EGR and Cooling System Procurement
Fuel Injection System Optimization and Procurement
Engine Shakedown |
Low Temperature Combustion with 2010 EPA emissions
Combustion System Optimization
Design Variable Valve Actuation Technology |
| IV. Fuel Economy Optimization | Feb 2009 – May 2010 | Load Extension Milestone
Steady State BSFC improvement Milestone
Transient and Fuel Economy Demonstration
Fuel Variability Demonstration
System Integration (ECU, VVA) |
<table>
<thead>
<tr>
<th>Barriers</th>
<th>Technology Roadmap</th>
</tr>
</thead>
<tbody>
<tr>
<td>High unburned hydrocarbons</td>
<td>- Higher fuel injection pressure, multiple injections
- Charge temperature control
- Improve fundamental understanding of the combustion process (improved chemical mechanisms)</td>
</tr>
<tr>
<td>Fuel economy</td>
<td>- Improved air system design
- Minimize EGR driving pressure differential</td>
</tr>
<tr>
<td>Combustion stability Cylinder-to-Cyl EGR and cooling variability</td>
<td>- Fuel-Air modeling and control management
- Implement combustion feedback
- Variable Valve Actuation</td>
</tr>
<tr>
<td>Limited power density</td>
<td>- Improved vehicle cooling system (low temperature radiator)
- Two stage turbo system
- Increased cylinder pressure capability</td>
</tr>
<tr>
<td>Transient response</td>
<td>- Two stage turbo
- CAC bypass</td>
</tr>
<tr>
<td>Accommodate fuel properties representative of US geography Diesel fuels ranging from of 42-58 CN</td>
<td>- Sensors
- Combustion diagnostics</td>
</tr>
<tr>
<td>Collaborations</td>
<td>Technologies</td>
</tr>
<tr>
<td>----------------</td>
<td>--------------</td>
</tr>
</tbody>
</table>
| Navistar | - Principal Investigator
 - Controls system development
 - Variable Valve Actuation design
 - Engine testing |
| UCB | - Combustion detection |
| LLNL | - CFD and chemical modeling of fuel spray and combustion |
| Siemens | - Fuel injector design and procurement |
| ConocoPhillips | - Fuel supplier
 - Fuel formulation and kinetic modeling support |
| BorgWarner | - Turbocharger system design and procurement |
| Mahle | - Piston design and procurement |
Approach

Combustion Modeling

1. Spray Model
 Used models from the literature that capture the liquid spray break up [1] to optimize injector and bowl configurations [2]

 \{ tetradecontane \\
 KH-RT breakup \\
 Turbulent dispersion \}

 n-heptane (C7H16)

2. Fuel Oxidation Chemistry
 Calibration of LTC Reactions

 \[C_{15}H_{15}O_2 = C_7 ket_{12} + OH \]
 \[CO + OH = CO_2 + H \]

 \[k(T) = A T^{\beta} \exp(-E_a / R_u T) \]

 NOX RSC ~ 1.4
 Soot asf ~ 200
 (Hiroyasu and NSC model, C2H2 as precursor)

3. Emission Model

4. ROI Model

5. K3Prep used for grid generation

[1] Reitz and Diwakar, SAE 870598

Patel et al, SAE 2004-01-0558

Smith et al, GRIv3 - Mech 3.0
Kong et al, IECS 2005-1009
Hiroyasu and d Kadota, SAE 760129
Accomplishments

Previous History of Deliverables

Designed Efficient LTC operation:

1. Boost-EGR Control: optimized combustion phasing
2. PCCI – premixed fuel injection strategies

Achievement in Phase III of project:

0.2gNOx engine out
4% better cycle average fuel consumption

Next barrier:

Improve combustion stability and robustness
Accomplishments
Key Deliverables for FY 2009-2010

Extension of Efficient LTC operation:
1. Boost-EGR Control: optimized combustion phasing
2. PCCI – premixed fuel injection strategies
3. Application of Variable Valve Actuation and Combustion Feedback

Achievements in Phase IV of project:
More robust combustion system attained with VVA

- Introduced and engineering margin for 0.2g NOx target
- Improved cycle average fuel consumption by 5.5%
- Soot reduction was improved by 0.05g/bhp-hr
Accomplishments
Key Deliverables for FY 2009-2010

Enabling technologies for Efficient LTC operation

- Multi-Shot, EGR enabled PCCI
- Single-Shot, EGR enabled PCCI
- Enhanced PCCI single-shot, EGR with Variable Valve Actuation
Accomplishments

Advantages of VVA

Extension of Efficient LTC operation:

1. VVA provided **greater control** over the combustion process:
 - Reduced charge variability among cylinders
 - Allowed to extend the PCCI range (control over effective compression ratio)

2. **Combustion diagnostics**
 - Feedback was extended to VVA
 - Implementation did no tax the ECU performance.
Accomplishments

Full integration of VVA

An Effective VVA Device

Advantages of Electro-Hydraulic System:

- Simple and Robust
- Fine resolution for IVC
- Cylinder to cylinder adjustment
- Cycle to cycle adjustments
- Simple package over baseline valve train
Accomplishments
Thermodynamic effects VVA

1. Lowered effective CR

2. Early intake valve closing (EIVC)
 - Lowered in-cylinder pressure
 - EIVC produces a nearly isentropic expansion (reduced losses)

3. Increase ignition delay and promote cool flame chemistry
Accomplishments
Combustion effects VVA

Advancing Intake Valve Closing at 30% load

1. **NOx ~ 0.18g/bhp-hr held constant**
 - Combustion phasing ~ 7.5°
 - Accurate metering of EGR

2. **BSFC is reduced ~ 5%**
 - Reduced back-pressure
 - Offsets the increased CO and HC

3. **Soot is reduced ~95%**
 - Longer ignition delay
 - Lower temperatures at ignition

![Graph showing NOx and BSFC changes with advancing IVC timing]

Low Temperature Combustion Demonstrator for High Efficiency Clean Combustion
DE-FC26-05NT42413
- Combustion Feedback (CBFK) was implement in Phase III to control combustion phasing.
- CBFK was extended in **Phase IV** to **control the charge** via individual cylinder-to-cylinder valve timing control: *effective system to further extend the engine PCCI operation*.

![Graphs showing combustion phasing and cylinder charge control](image-url)

- Cylinder charge is controlled with VVA – eliminates variability under LTC conditions.
- Combustion phasing is controlled with fuel timing.
VVA yielded simultaneous reduction of BSFC and PM
Comprehensive relationships in combustion parameters

All data at 0.2gNOx/bhp-hr

Significant soot reduction (~95%)

Simultaneous with reduction in fuel consumption (~5%)

Ref. SAE 2010-01-1124
The simulations helped diagnose the soot reduction mechanisms with advanced IVC:

- better mixture characteristics
- Dependency on local equivalent ratio
Accomplishments

Impact of Fuel Properties

The LTC process was validated across a range of fuel properties:

- Properties spanned CN, boiling point and aromatics*.
- The combustion was robust across the fuel ranges.
- Fuel reactivity has an impact over performance:
 - Efficiency improvements of 5% are possible.
 - Soot emissions can be greatly reduced.

The potential for improved performance was identified. This is a potential area for further development (see next slide).

* Ref. FACE Fuels Program
Extend the thermal efficiency via fuel reactivity

Fuel Consumption improvement (%)

Baseline
- Base BSFC: 0.0%
- NOx (g/bhp-hr): 0.97

EGR+BOOST
- 2.5%

PCCI
- 4.0%

VVA+FBK
- 5.5%

Fuel Reactivity
- 10.5%

Program target
Long term target
Summary

- **Applied low temperature combustion (LTC)** to the ITEC 6.4L V8 production engine:
 1. **Load:** Extended LTC operation to 16.5 BMEP.
 2. **Fuel Economy:** Improvements were increased from 4% to 5.5% by extending the application of PCCI by means of Variable Valve Actuation and combustion feedback.
 3. **NOx:** Engine out NOx was maintained below the 0.2g/bhp-hr target.
 4. **Soot:** 90% soot reduction was demonstrated at low to mid loads.

- **Engine testing was coupled to combustion fundamentals:**
 - Simulation was used to understand relation between LTC and the effective compression ratio.
 - Simulation was used optimize the implementation of VVA.

- **Capability for production implementation:**
 - A production ECU like module was developed to perform in-cylinder combustion control.
 - Controller performs cycle-to-cycle and cylinder-to-cylinder adjustments on the fuel and VVA systems.