

Air Cooling Technology for Power Electronic Thermal Control

U.S. Department of Energy Annual Merit Review

P.I. Jason Lustbader
National Renewable Energy Laboratory

Team Members:

Sreekant Narumanchi Gopi Krishnan Desikan Bharathan Charlie King

Thursday June 10, 2010

Project ID: APE019

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

Project start date: FY06

Project end date: FY13

Percent complete: 50%

Budget

Total project funding

DOE share: \$1750k

Contractor share: \$0.00

FY09 Funding: \$350k

FY10 Funding: \$400k

Barriers

- Air is a poor heat transfer fluid
- Air density is low requires significant volume
- Parasitic power
- Perception and novelty

Partners

- Interactions
 - FreedomCAR Electrical & Electronics Technical Team
 - Oak Ridge National Laboratory
 - Delphi, PowerEx, Semikron, GE
- Project lead: NREL

Project Objectives - Relevance

- Develop and apply air cooling technology to improve power electronics thermal control design and influence industry – enhancing system performance to meet FreedomCAR technical targets for weight, volume, cost, and reliability
- Enable heat rejection directly to the sink, namely, ambient air simplifying the system by eliminating liquid coolant loops
- Develop system capable of 150-200 W/cm² while maintaining chip operating temperature below 150°C
- Create solutions that help reduce fuel use and improve sustainability
- FY10
 - Develop novel micro-fin air cooled heat sink prototype and test
 - Research new novel cooling technologies synthetic jets
 - Evaluate fan efficiency for input into system level analysis

Project Milestones - Relevance

FY2009

- Developed novel micro-fin based air cooled heat sink concept
- Created CFD model to predict performance and improve on design
- Tested commercially available fans and showed a range of performance
- Filed invention report for the novel micro-fin based heat sink design
- **DOE Milestone**: Summarized findings in DOE milestone report

FY2010

- Completed preliminary review of synthetic jet technology, including initial flow visualization proceed with feasibility study (3/10)
- Established more direct collaboration with ORNL (3/10)
- Complete synthetic jet feasibility study go/no-go on application (8/10)
- Develop system level thermal analysis of air cooling system (9/10)
- DOE Milestone: Summarize findings for DOE milestone report (9/10)

Challenges and Barriers - Relevance

Advantages

Everything on a vehicle is ultimately air cooled

Rejecting heat to air can eliminate intermediate fluid loops

Air is benign and need not be carried

Air is a dielectric and can contact the chip directly

Challenges

Air has a low specific heat

Air is a poor heat-transfer fluid

Air density is low

Examples of Automotive Air Cooling - Relevance

Honda Insight package

Power Rating 12 to 14 kW
Active air cooling
Electric blower ~ 120 W
Heat load ~ 700 W

AC Propulsion V2G model AC-150

Power Rating 150 kW
Active air cooling
Electric blower ~ ??? W
Heat load ~ 2000 W

- Electric Mini Cooper picture (right, 1st row): DOE Advanced Vehicle Testing Activity & Idaho National Laboratory
- Honda power electronics pictures (left, 2nd row): Oak Ridge National Laboratory

Air Cooled System Thermal Design - Approach

- 1. Novel micro-fin design
- 2. Synthetic jet investigation
- 3. Other novel technologies

- 1. Thermal design trade-offs
- 2. Collaborate with ORNL on influence of electrical design

Thermal Environment -Ambient -Air Source

Device Type -Max Temperature - Efficiency

Vehicle Context -Power/ Duty Cycle -Volume/weight limits

2. Fan performance

3. Other (filters, ducts)

Research and Development - Approach

- Research novel cooling technology fundamental heat transfer
- 2. Scale cooling technology to inverter scale and investigate balance of system
- 3. Apply system design to inverter and find opportunities for improvement
- 4. Demonstrate prototype at vehicle level

Thermal Environment

Source	Temperature Range (°C)	Challenge/Opportunity
Under Hood	100 to 140	Not suitable for cooling devices at 125°C
External ambient air	30 to 45	Highly suitable for cooling
Cabin air	10 to 25	Limited advantage over ambient air. Penalty on air conditioners

Need to understand system trade-offs driven by air source local thermal environment which are influenced by inverter location

Device Type and Vehicle Context

Improving device efficiency and maximum operating temperature will increase air cooling system opportunity

Variability of air cooling system allows for control to load conditions, maximizing "real world" system COP

Previous - Technical Accomplishments

- ASPEN model for system trade-offs
- Developed micro-fin design quick estimator software package
 - Showed that micro-fin air cooling can remove up to 150 W/cm²
- Fabricated and tested air-cooled heat sinks, with excellent agreement in performance between model and test results
- Developed innovative air-cooled heat sink concept
 - Heat transfer area doubled
 - Pressure loss decreased by 50%
 - Colder air directed to hotter areas

- Fabricated and tested prototype micro-fin based novel air cooled heat sink
- Design and experimental results are under review by NREL patent committee
- Measured pressure loss higher than predicted, believed to be due to inconsistent fin spacing
- Validated models and demonstrated ability to reject 3000 W at 1.8 inches of water, using 21.1 W of fluid power

- Fully pulsatile jet
- Zero net mass flux : No external plumbing
- Imparts momentum : Influences medium
- Low electric power : Low cost
- Simple fabrication : High reliability
- Dominant vortical structures

Heat Transfer Enhancement Strategy

Increase Momentum
Transfer

Increase Surface Area

1. Crook, A., Crowther, W.J., Wood, N.J. 'A parametric study of a synthetic jet in a cross flow', 22nd International Congress of Aeronautical Sciences, Harrogate, UK, 2000

Evolution of a Free Synthetic Jet: Ejection Stroke

1. Roll up of shear layer

3. Break up of vortical structure

2. Vortex ring + trailing jet

4. Transition to a turbulent jet

SJ Impingement on a Flat Surface

1. Roll up of shear layer

2. Evolution of free jet

3. Impingement

4. Secondary vortical structure

Computational Fluid Dynamics Model Development

1. Laminar vortex ring formation

Contours of Vorticity Magnitude (1/s) (Time=5.0000e-02)

2. Laminar vortex ring impingement

Experimental Setup for Synthetic Jet Heat Transfer

- Test apparatus to measure fundamental heat transfer performance of synthetic jets on extended surfaces
- Heat transfer performance measured as a function of:
 - Amplitude
 - Frequency

Variable	Value	Units	
Q _{input}	5.1	W	
A _{heater}	2	in ²	
A _{base plate}	1.5	in ²	
Heat sink	32	pin (staggered)	
d _{pin}	1.5	mm	
d _{slot}	5	mm	

- Optimal driving frequency for thermal performance maximization
- Increasing driving amplitude results in increased convective heat transfer
- The combined synthetic jet-extended surface design space will be fully characterized
- Further studies will investigate the viability of synthetic jets and extended surfaces for power electronics cooling

A comparison of available fans, significant variation in performance

Manufacturer/Model		AMETEK* Nautilair 8- inches	ebmpab st 8200 JH3	Honda* Insight Fan	Mixtus 7.9 E- Series	Xcelaero Squall 50
Nominal Specification	Units	@80cfm and 3-in water	@80cfm and 3-in water	@100cfm and 1-in water	@100cfm and 2.2-in water	@100cfm and 2.2-in water
		40.00	10.00	57.05	57.05	57.05
Air mass flow	(g/s)	46.28	43.39	57.85	57.85	57.85
Volumetric flow	(m^3/s)	0.0378	0.0354	0.0472	0.0472	0.0472
Required pressure drop	(Pa)	748	249	498	548	548
Mean fan diameter (d)	(m)	0.2032	0.08	0.08	0.2032	0.0762
Fan speed	(rad/s)	576	1466	377	471	1340
Non-dimensional speed, n-sub-s	()	0.91	5.12	0.90	1.05	2.99
Non-dimensional diameter, d- sub-s	()	5.20	1.61	1.65	4.30	1.61
Reynolds number (ρVd/μ)		409162	161433	41511	334769	133907
Theoretical Fan Power	(W)	28.24	8.83	23.54	25.89	25.89
Actual Power	(W)	200	25	80	96	66
Efficiency Overall	()	0.141	0.353	0.294	0.270	0.392

^{*}Tested at NREL

Source: Balje, Turbomachines, 1981

Collaboration

Oak Ridge National Laboratory

- FY11:
 - NREL will continue their system level air cooling thermal design including cooling technology, balance of system, and high level package thermal analysis
 - ORNL will focus their work on wide-band gap materials in preparation for FY12 high temperature air cooled inverter design
- FY12:
 - NREL's air cooling thermal system research will be used to provide useful air cooling system thermal design information
 - ORNL work to define the inverter electrical design and feasibility of inverter topologies
- FY13:
 - ORNL and NREL will collaborate to develop and demonstrate a viable high temperature air cooled inverter
- Other interactions
 - FreedomCAR Electrical & Electronics Technical Team
 - Delphi, PowerEx, Semikron, GE

Future Work

FY10

- Complete synthetic jet feasibility study go/no-go to system scale up
- Develop system level air cooling analysis approach, looking at interaction with packaging design
- Design and build single target air cooling test bench for fundamental heat transfer testing
- Investigate other novel air cooling approaches

FY11

- Design and build system level air cooling test bench
 use test bench to implement most promising technology on a multi-heat source array
- Microchannel design has been shown to perform near program heat transfer targets – work to reduce weight, volume, size, and apply to likely system topology
- Explore other novel air cooling technologies and surface enhancements
- Address balance of system questions, developing knowledge and solutions for fans, filters, and ducting

Summary

DOE Mission Support Overcome barriers to adoption of low-cost aircooled heat sinks for power electronics; air remains the ultimate sink.

Approach

 Create system level understanding and designs addressing: advanced cooling technology, balance of system, and package thermal interactions; developing solutions from fundamental heat transfer, then system level design, to application - culminating in vehicle level viability demonstration with research partners.

Summary

- Fabricated and tested prototype novel micro-fin heat sink design
 - Experimental validation of performance showing 3kW heat rejection
 - Design and results under review by NREL patent committee
- Conducted initial assessment of synthetic jets
- Showed range of fan performance through testing and research

- Collaborating with industry & partners
 - Established collaboration plan with ORNL to develop needed thermal system knowledge for a FY12 high temperature inverter project
 - Interacting with Auto OEMs and suppliers for test data, review, and validation activities including: Delphi, PowerEx, and Semikron

Contact Information

Jason A. Lustbader
Senior Engineer
National Renewable Energy Laboratory
Jason.Lustbader@nrel.gov
303-275-4443