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Overview

• Project start:  October 2006
• Project end date:  March 2012
• Percent complete:  70%

• Total project funding
‒ DOE: 100% pre Mar 2009
‒ DOE:   67% post Mar 2009
‒ Marlow (CRADA):  33% post Mar09

Timeline

Budget

Barriers

• Marlow Industries
• General Motors

Partners

• Barriers addressed
‒ 2/3 of the chemical energy in automotive 

fuel is rejected to the atmosphere as 
waste heat

‒ Thermomechanical stresses must be 
managed and TE material strength 
improved to fully exploit TE devices

‒ TE materials are inherently brittle and 
susceptible to thermal-induced fracture

• Targets*
‒ 5000h life or 10 yr or 150k mile lifetime
‒ Brittle bulk materials must survive 

thermal and mechanical stresses for life

*  “A Science-Based Approach to Development of Thermoelectric Materials for
Transportation Applications, Office of FreedomCAR and Vehicle Technologies, August 8, 2007.

FY08 FY09 FY10 FY11

DOE $300K $300K $300K $300K

Marlow 
Ind. $75K $150K $150K
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• Measure needed thermomechanical and thermophysical 
properties of candidate TE materials considered for waste heat 
recovery and cooling applications in vehicular applications.

• Combine measured data with established probabilistic reliability 
and design models to optimally design automotive and heavy 
vehicle TE devices for heat recovery and cooling. 

Objectives
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• FY09:  Generate thermoelastic and mechanical property 
database as a function of temperature on at least one candidate 
high-temperature-capable p- and n-type material. 

• FY10: 

– Generate thermoelastic and mechanical property database 
as a function of temperature on candidate p- and n-type 
TEMats fabricated by Marlow Industries as part of CRADA.

– Develop in-situ thermal-gradient-strength test method for 
TEMats. 

Milestones
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• Measure Young’s Modulus, Poisson’s ratio, CTE, thermal 
conductivity, heat capacity, and strength as a function of 
temperature of candidate Marlow TEMats. 

• Perform fractography on strength specimens and identify 
failure initiation sites and strength-limiting flaw types.

• Critically assess machining strategies of TEMats to 
ultimately maximize their mechanical performance.

• Use probabilistic design and reliability methods with 
candidate and prototype TE modules. 

• Measure strength of TEMats while a thermal gradient is 
concurrently superimposed.

Technical Approach
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• Established a strength database for a reference TEMat (Bi2Te3) 
usable for comparisons to higher-temperature-capable TEMats

• High temperature strength test fixturing developed

• Preliminary strength-testing of a developmental and high-
temperature-capable TEMats (skutterudites) was initiated.

• Transport properties of those skutterudites were also evaluated.

Technical Accomplishments – 1 of 11

Overview of FY09 results
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Why is mechanical strength important to TE materials?

Technical Accomplishments – 2 of 11

 

RTherm =
STens(1−ν)κ

CTE • E
RTherm =
STens = 

ν =
κ =

CTE =
E  =

Thermal resistance parameter (the larger the better)
Tensile stress or strength
Poisson’s ratio
Thermal conductivity
Coefficient of thermal expansion
Elastic modulus

Kingery, J. Am. Cer. Soc.,
38:3-15 (1955).

 

STens =
KIc

Y c
KIc =

Y =
c = 

Fracture toughness
Crack shape factor
Griffith flaw size

Must seek to minimize c!

Tensile Strength << Compressive Strength
Manage tensile stress for conservative design

Griffith Criterion
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TE legs and potentially active flaws:

• Legs  prisms

• Volume-, surface-, and 
edge-located strength-
limiting flaws all 
possibly active

• e.g., 3 x 3 x 3 mm

Technical Accomplishments – 3 of 11
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Strength-limiting flaw classification for brittle materials;
the potential existence of all are in unchamferred TE Legs

Technical Accomplishments – 4 of 11

Bi-Dimensional
Hybrid Flaw

Pores
Porous Regions

Large Grains
Agglomerates

Inclusions

Volume Type
(3-Dimensional)

Machining Damage
Pitting

Handling Damage
Chemical RXN Product

Oxidation

Surface Type
(2-Dimensional)

Edge chippingEdge Type
(1-Dimensional)
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Technical Accomplishments – 5 of 11
Yb0.27Co4Sb12.08 (N-Type)

Polished
Surfaces

Fracture
Surfaces

Ce0.86Co1.02Fe2.98Sb11.97 (P-Type)

50 µm

Example:  for 2c = 44 µm (i.e., 325 sieve mesh), KIc = 1 MPa√ m, and Y = 1.5
STens = 140 MPa

STens will never be stronger than that unless “c” is reduced
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Technical Accomplishments – 6 of 11

Transport Properties of the Skutterudites
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Technical Accomplishments – 7 of 11

3-Pt-Bend (Uniaxial Flexure) Ring-on-Ring (Biaxial Flexure)

• Metal fixturing; limits 
test temperature

• Need to sustain 
alignment; seek 
passive self-alignment

• Simpler the better

• RoR; edge effects are 
never operative

An Alternative to the Testing Convention Was Needed



Managed by UT-Battelle
for the Department of Energy

Technical Accomplishments – 8 of 11

This is a “Ball on Two Rollers” 3-Point Bend Fixture

An All-Alumima High-Temperature “3-Point” Bend Fixture
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Technical Accomplishments – 9 of 11

St. Venant’s Principle

Classical Beam Bending Equation Works
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Technical Accomplishments – 10 of 11

Failure Stress as a Function of Temperature
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How will this information be used?

• High 1st principal tensile 
stresses exist in the bulk and 
on surfaces and edges

• Apply (censored) strength 
data to estimate and reduce 
risk of fracture

• Improve reliability by:
- Improving strength of TE material

- Lessening tensile stresses in the legs 
(via geometrical changes)

- Both

Must manage the competition and concurrent activities of
Edge- vs. Surface- vs. Volume-based strength limitation

Technical Accomplishments – 11 of 11
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• Continue to collaborate with Marlow Industries, a manufacturer of 
high-temperature-capable TEMs and TEDs, to contribute to the 
reliability improvement of their candidate TEMs (FY10 & FY11). 

• Develop a thermomechanical test system that will enable strength 
measurement of TEM specimens while a thermal gradient is 
concurrently imposed through the specimen thickness (FY10&FY11).

• Develop method to identify and quantify the size of strength-limiting 
flaw populations (FY10 & FY11).

Future Work
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Summary
• Strength

– The strength of N- and P-type skutterudite compositions were evaluated.
– Both candidates for use in TE devices for high-temperature energy harvesting.
– The strength of the N-type TE was sustained through 500°C whereas that for the 

P-type TE decreased by ~ 15% at 500°C. 

• General strength testing of bulk TEs
– As long as prismatic TE legs continue to be considered for TE devices, the 

competing roles of edge-, surface-, and volume-strength-limiting flaws should 
be considered for meaningful reliability analysis.

– Representative testing (i.e., stressing) is produced by evaluating actual TE leg 
geometries (or as close to them as possible).

• New strength test fixture and method
– A self-aligning, high-temperature three-point-bend fixture was developed.
– The classical and closed-form beam-bending strength equation is used with it.
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