Residual Stress Measurements in Thin Coatings

Dileep Singh
Nuclear Engineering Division
June 10, 2010

Coworkers:
J. Routbort, K. Pappacena, O. Erylimaz, G. Chen, W. Liu

Project ID # PM031

Vehicle Technologies – Annual Review – June 7-11, 2010

Sponsored by Propulsion Systems Materials

This presentation does not contain any proprietary, confidential, or otherwise restricted information
Overview

Timeline
- Project start FY07
- Project end FY12
- 70% complete

Budget
- Total project – $700 K
- FY09 = $100 K (DOE)
- FY10 = $200 K (DOE)

Barriers
- Role of residual stresses in thin tribological coatings and its implications to the coating performance and reliability is not well characterized or understood
 - accurate stress/strain profiling not available
 - analysis and interpretation of data
 - adhesion energy measurements are not trivial
 - correlations of coating processing, stresses and performance is quite complex

Partners
- Borg Warner
- Galleon International
- Hauzer Techno Coatings, Inc.

This project complements the overall effort in the area of development of low friction high wear resistant coatings for vehicle applications
Relevance

- Minimizing friction and wear in vehicle drive trains and engine components can significantly reduce parasitic energy losses, and consequently, will result in petroleum displacement.

- Performance (low friction and wear) of tribological coatings and its long-term durability is strongly dependent on the residual stress profiles in the coating and at the coating/substrate interface; thus, it is critical to understand residual stresses in the coatings to extend component life and reduce life-cycle costs.

- No reliable technique(s) available to profile residual stresses in thin coatings.

- Inter-relationships between processing, residual stresses, and coating performance not available.

Develop and measure depth-resolved residual stress in thin coatings
Objectives

- Develop and refine high-energy x-ray and/or scanning electron microscopic techniques to profile residual strains/stresses in super-hard, low-friction coatings for vehicle applications.

- Correlate residual stresses in coatings systems to processing technique and variables, material properties, adhesion energies, and tribological properties.

- Develop a coating processing protocol to produce reliable coatings with engineered residual stresses for a specific coating system applicable for vehicles.

- Transfer technology to industry.
Approach

- Develop/refine high energy x-rays for profiling residual strains in thin coatings by measuring the change in the lattice parameter of the coating constituents
 - tribological coatings ≈2-5 µm so they require meso-scale techniques with high depth resolutions (<1 µm)

- Deposit low friction high wear resistance coatings and profile residual stresses
 - deposition power & rate
 - composition

- Develop scratch-based techniques to measure hardness, fracture toughness, and adhesion energy of thin coatings

- Relate residual stresses, mechanical & tribological properties, and processing to coating durability

processing ⇐ residues stresses ⇐ performance
Milestones

FY09 (all completed)
- Analyze the stress measurement data (ZrN, TiC coatings)
- Correlate stresses and the processing conditions (MoCuN coated steel samples)
- Explore measuring film mechanical behavior and adhesion energy using indentation techniques
- Procure a scratch tester for adhesion energy measurements

FY10
- Characterize mechanical properties of MoN and MoCuN coatings using nanoindentation
- Apply scratch testing to evaluate adhesion energy for MoCuN coatings fabricated at different processing conditions
- Correlate measured adhesion energies to residual stresses and processing conditions (MoCuN)
- Initiate tribological properties/performance of the MoCuN coatings
- Develop collaborations with industry
Accomplishments

Strain measurement techniques

1. Cross-sectional microdiffraction

Scanning the cross section of a film using submicron mono x-ray beam.

2. Differential aperture x-ray microscopy (DAXM)

X-ray absorption wire acts as a differential aperture to separate information from different depths. (B.C. Larson et al. Nature 415, 887 (2002))
Accomplishments

Coating systems investigated:

(A) MoCuN on H13 steel
• Fabricated in-house using PVD
• Mo bond coat
• Cu concentration
• deposition power & time varied

(B) TiC deposited on steel – high and low deposition rates

(C) ZrN deposited on steel – high and low deposition rates

<table>
<thead>
<tr>
<th>Sample ID</th>
<th>Mo & Cu Deposition Power (kW)</th>
<th>Deposition Time (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C70109</td>
<td>Mo:8; Cu: 0</td>
<td>7200</td>
</tr>
<tr>
<td>C70110</td>
<td>Mo: 8; Cu: 0.5</td>
<td>6600</td>
</tr>
<tr>
<td>C61215</td>
<td>Mo: 8; Cu: 0.8</td>
<td>7200</td>
</tr>
</tbody>
</table>
Accomplishments

Microdiffraction

Shift in the diffraction peaks (MoN & Mo) as a function of depth indicative of variation of residual stresses as a function of depth.
Accomplishments

Lattice Parameters of MoNCu Coatings

Mo: 8 kW, Cu: 0 kW, t = 7200 s

Mo: 8 kW, Cu: 0.8 kW, t = 7200 s

Mo: 8 kW, Cu: 0.5 kW, t = 6600 s

• Lattice parameters of MoN 222 reflections for various stress-states as a function of coating depth

• Strain free lattice parameters determined from $\sin^2\phi$ approach
Accomplishments

Depth-resolved stresses in MoNCu films

In-plane biaxial compressive stresses as a function of coating depth in the MoNCu coatings deposited on steel for various processing conditions

Mo: 8 kW, Cu: 0 kW, t = 7200 s

Mo: 8 kW, Cu: 0.8 kW, t = 7200 s

Mo: 8 kW, Cu: 0.5 kW, t = 6600 s
Accomplishments

TiC Coating on Steel Results

Lattice Spacing

Residual Strain

- TiC High Rate
- TiC Low Rate
- HRRS process
- ARE process

At high deposition rate, in-plane stresses are compressive as desired
Accomplishments

ZrN Coating on Steel Results

Lattice Spacing

Residual Strain

At high deposition rate, in-plane stresses are more compressive
Work of Adhesion Calculations

- Stress based Work of Adhesion calculation (Xie 2001)
 - Use scratch test to determine critical load (P) at which spallation occurs
 - Calculate compressive stress (σ_S) due to scratch test using P and other material properties
 \[
 \sigma_S = \frac{0.15}{R} \left(\frac{PH_f}{H} \right)^{0.5} E_f^{0.3} E^{0.2}
 \]
 - Use scratch test stress σ_S along with the residual stress σ_R from deposition to determine work of adhesion
 \[
 W = K_2 \sigma^2 t \left(1 - \nu_f^2 \right)
 \]
 - Choose appropriate K_2 value for deformation mode

σ_S = scratch test stress
R = indenter radius
P = critical load
H_f = coating hardness
H = substrate hardness
E_f = coating modulus
E = substrate modulus
W = work of adhesion
K_2 = constant (for spallation = .343)
$\sigma = \sigma_R + \sigma_S$ = total stress
σ_R = residual stress
t = coating thickness
ν_f = coating Poisson’s ratio

Scratch Test Measurements

- Diamond stylus scratches coating with increasing applied normal force
- Acoustic events are recorded
- Microscopy is used to determine where spallation begins
- Coating spallation position is correlated with acoustic events to determine critical load

Critical Load: 14.885 N
Nanoindentation Results

- Nanoindentation used to calculate the elastic modulus and hardness of each coating
- No significant differences in the elastic moduli or hardness values with copper content in MoCuN coatings

![Image of Nanoindentation Results graph]

Nanoindentation Data

<table>
<thead>
<tr>
<th>Sample</th>
<th>Elastic Modulus (GPa)</th>
<th>Hardness (GPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C61215</td>
<td>320 ± 20</td>
<td>25 ± 2</td>
</tr>
<tr>
<td>C70110</td>
<td>330 ± 20</td>
<td>26 ± 2</td>
</tr>
<tr>
<td>C70109</td>
<td>310 ± 20</td>
<td>24 ± 2</td>
</tr>
</tbody>
</table>

![Image of Force vs. displacement curves]

Force vs. displacement curves used to calculate elastic modulus and hardness

![Image of Positions and images of the 9 indentations]
Work of Adhesion Results

- Critical loads ranged from 5-14 N using 125 μm stylus
- Calculated work of adhesion ranged from 48-112 J/m²
 - (higher than DLC on WC-Co (Park 1997), and TiN on SS (Bull 1990), and SiCN on SS or Si (Mishra 2008), SiC on inconel, steel or titanium (Gruss 1999), lower or similar to ZrN on inconel, steel or titanium (Gruss 1999))
- Higher work of adhesion and critical load achieved with lower Cu content and higher in-plane compressive residual stresses

<table>
<thead>
<tr>
<th>Sample ID</th>
<th>Mo & Cu Deposition Power (kW)</th>
<th>Deposition Time (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C70109</td>
<td>Mo:8; Cu: 0</td>
<td>7200</td>
</tr>
<tr>
<td>C70110</td>
<td>Mo: 8; Cu: 0.5</td>
<td>6600</td>
</tr>
<tr>
<td>C61215</td>
<td>Mo: 8; Cu: 0.8</td>
<td>7200</td>
</tr>
</tbody>
</table>

Profilometer Results

- Profilometer used to study the scratch track at the critical load
- Trench depth and pile up height were analyzed
- Samples with higher Cu content (and lower residual stress) exhibited lower trench depths and lower pile up heights

<table>
<thead>
<tr>
<th>Sample ID</th>
<th>Mo & Cu Deposition Power (kW)</th>
<th>Deposition Time (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C70109</td>
<td>Mo:8; Cu: 0</td>
<td>7200</td>
</tr>
<tr>
<td>C70110</td>
<td>Mo: 8; Cu: 0.5</td>
<td>6600</td>
</tr>
<tr>
<td>C61215</td>
<td>Mo: 8; Cu: 0.8</td>
<td>7200</td>
</tr>
</tbody>
</table>
Path Forward

- Complete adhesion energy evaluations for TiC and ZrN
- Complete mechanical properties of TiC and ZrN coated samples for varying processing conditions
- Measure tribological performance for MoCuN, TiC, and ZrN coated samples
- Correlate the measured residual stresses in MoCuN, ZrN, TiC coatings to tribological properties and processing
- Initiate discussions with coating manufacturers for collaboration
Conclusions

- X-ray based techniques developed and applied for residual stress measurements
- Stresses correlated to processing conditions (deposition rates, power and time) for MoCuN, TiC, and ZrN coatings
- Adhesion energy for MoCuN coated samples measured
- Nano-indentation technique has been demonstrated for characterization of coating