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Overview
Timeline

• Start – Oct. 2008
• Finish – Sept. 2010 & beyond
• 10% Complete for FY10

Budget
• Total project funding

– $80K/year (FY’09)
– $185K (FY’10)

Barriers
• Advanced propulsion materials 

needed to meet various multi-
year Vehicle Technology 
program goals are several times 
more expensive than 
conventional steel – would they 
be economically viable, energy-
efficient, and environmentally 
friendly when commercialized?

• Specific technology 
improvements affecting major 
cost drivers detrimental to 
technology viability

• Material viability in most cases 
determined on the basis of part 
by part substitution

• Vehicle manufacturing instead 
of life cycle consideration
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Study Objective

Estimate the Cost-effectiveness of the CF8C+ Cast 
Austenitic Stainless Steel in Automotive 

Applications
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Milestones

• Complete the cost-effectiveness analysis of CF8C+ 
cast austenitic stainless steel in automotive 
applications (Completed Oct.’09) –
Presentation Focus

• Complete the life cycle analysis of alternative engine 
designs (July’10)

• Complete the life cycle energy analysis of CF8C+ 
cast austenitic stainless steel in automotive 
applications (Sept.’10)
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Approach

• Cost-effectiveness estimation based on a range of competing, 
corrosion-resistant stainless steel and nickel-base superalloys 
currently used in applications where CF8C+ might be used
– Cast (SiMo, Ductile Ni-Resist, HK30, HF, 625, and CN-12)
– Wrought (617, Super 304H)

• Analysis level considered both material (per lb replacement 
basis) and specific component application (addressing 
manufacturing differences) 
– Material (mass and cost savings and their ratio – both material 

and operation life time fuel cost savings considered) 
– Component (exhaust manifold and gas turbine inner case)



6 Managed by UT-Battelle
for the Department of Energy

pm034_das_2010_p

Component Cost Modeling Approach –
Process Cost

• Process cost models explicitly represent the major processing 
steps in the manufacture of products

• Specific manufacturing technologies are modeled at each step, 
including assumptions about key technical and economic 
parameters

• Values of all inputs associated with each process step are 
estimated by process step and for the production process as a 
whole

• Output from the first process step—total cost at the step and 
costs of individual inputs—becomes an input to the second 
process step and so forth

• Spreadsheet software
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CF8C+ Cast Stainless Steel

• A heat resistant, cast, corrosion resistant austenitic stainless steel
– Major alloying elements: 18-22 wt% Cr; 11-14 wt% Ni; 0.3-1.5 wt% Nb; 

0.05-0.15 wt% C
– 0.03 wt% sulfur provides a four-fold creep life improvement at 850oC
– 2-10 wt% Mn improves work-hardening, metal’s fluidity, and also is an 

effective austenite stabilizer at a lower cost than Ni
– Appropriate Nb:C ratio provides high-temperature strength without 

reducing ductility (better than Nb-containing stainless steels)

• Suitable for applications where it is exposed to high temperatures and 
extreme thermal cycling such as air/exhaust-handling equipment for 
diesel and gasoline engines and gas-turbine engine components
– Tensile and creep strength in excess of 600oC, cyclic oxidation resistance 

>700oC, room temperature ductility, long-term resistance to cracking 
during severe thermal cycling 

– Good castability and weldability, and no heat treatment requirement
– Strength comparable to the best commercial wrought stainless steels and 

an improved creep strength compared with all the various grades of cast 
irons used for diesel exhaust components
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Technical Accomplishments and Progress

• Life cycle modeling of advanced propulsion materials was 
undertaken with an initial first-year effort determining cost-
effectiveness  of CF8C+ cast austenitic stainless steel 

• CF8C+ has been demonstrated successful in several high-
temperature applications and so a life cycle assessment in 
terms of energy, economic, and environmental is consequential

• Several analysis levels were considered, starting with raw 
material cost and ending with component cost with due 
consideration of fuel savings due to lightweighting



9 Managed by UT-Battelle
for the Department of Energy

pm034_das_2010_p

CF8C+ Savings Per Pound of Various Replacement Materials

• Mass savings estimated based 
on the same material bending 
stiffness

• Mass savings potential range is  
0.01-0.18 per lb of replacement 
material, 18% max. savings 
with ductile Ni-Resist

• Most alloys cost significantly 
less, except SiMo, HF, and 
Super 304H; Cost savings 
range  from $0.67–$10.10/lb 

• Alloy 617 offers the most 
cost/mass savings potential; 
SiMo, HF, and Super 304H 
alloys are unfavorable

Alloy Density 
(gm/cc)

Young’s 
Modulus
GPa

Alloy 
Cost 
($/lb)

Savings
Mass 
(lb)

Cost 
($)

Cost/ 
Mass

CF8C+ 7.61 213 2.70 NA NA NA

Cast

SiMo 6.67 148 0.45 0.07 -2.05 -27.7
Ductile 
Ni-
Resist

7.37 140 5.24 0.18 3.04 16.5

HK30 7.53 186 3.67 0.08 1.19 14.7
HF 7.39 183 2.09 0.07 -0.42 -6.0
625 8.24 208 12.50 0.11 10.10 90.9

CN-12 7.52 213 3.33 0.01 0.67 46.2

Wrought

617 8.03 211 12.50 0.08 10.02 122.2
Super 
304H 7.72 200 2.01 0.07 -0.50 -7.1
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Material Cost-Effectiveness Based on Fuel Savings 

• Fuel savings estimate based 
on both primary and secondary 
mass savings per lb of 
replacement material

• Cost ratio is the ratio of CF8C+ 
material cost to replacement 
material (on per pound of  
replacement material basis) 
with and without fuel savings 
consideration

• Unfavorable cost ratios, i.e., 
greater than 1, were found in 
cases of SiMo, HF, and Super 
304H

• Fuel savings consideration 
improves the cost 
competitiveness of CF8C+ by 
about 10% in case of alloy 617
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Cost-Effectiveness in Component Application 1 

• Competing materials—SiMo and HK30—considered for a 19-lb light-duty 
vehicle exhaust manifold application assuming high-volume automated green 
sand casting technology and the process cost modeling approach

• Raw material contributes a major share of total part cost – thus, least 
expensive material, SiMo, is the most cost-effective in this application

• Higher part cost of both stainless materials, i.e., HK30 and CF8C+, is due to 
labor-intensive finishing step and higher scrap rates

• Lower CF8C+ material cost facilitates lower part cost than HK30
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Cost-Effectiveness in Component Application 2 

• A 683-lb gas turbine case with 3” wall thickness based on centrifugal 
casting technology considered where nickel-based superalloys such as 617 
and 625 are currently used

• Cost estimates are based on the major processing steps, i.e., raw material, 
foundry, heat treat, and machining operations

• 40% CF8C+ part cost savings is anticipated due to
– Lower raw material cost since stainless steel processing is same in both cases
– Heat treatment savings (contributes only 2%  of savings)
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Proposed Future Work

• Energy savings analysis of CF8C+ cast austenitic stainless 
steel—ongoing

• Life cycle analysis of engine lightweighting in terms of 
downsizing vs. lightweight materials use—ongoing

• Viability of advanced propulsion materials in advanced 
powertrains such as hybrids and fuel cell vehicles

• Economic, energy, and environmental impact analyses from a 
life cycle perspective of advanced propulsion materials 
manufacturing technologies with an emphasis on aluminum,  
magnesium, titanium, and ceramics

• Advanced propulsion materials’ potential in heavy-duty 
vehicles
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Summary
• Development of advanced propulsion materials such as CF8C+ would 

provide cost savings in applications that require potential heat and corrosion 
resistant stainless steel or nickel-base superalloys

• It is important that cost-effectiveness of advanced propulsion materials be 
examined not only on the basis of material cost, but also as a component in 
specific potential applications, thus allowing consideration of manufacturing 
technology costs

• Cost of advanced propulsion materials remains a barrier, but weight savings 
and associated fuel savings along with processing cost benefits would allow 
it to be cost-effective as found in the case of CF8C+

• SiMo, HF, and Super 304H are the least  favorable among the competing 
materials for CF8C+ considered here either due to a lack of cost savings 
and/or mass savings

• Fuel savings would allow an additional 10% cost savings, and CF8C+ 
application in exhaust manifold and gas turbine inner case appears to be 
favorable compared to HK30 and alloy 625, respectively
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