

Improving Energy Efficiency by Developing Components for Distributed Cooling and Heating Based on Thermal Comfort Modeling

Gregory P. Meisner General Motors Research & Development June 11, 2010

Project ID # ACE048

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

GM

- Start date November 2009
- End date October 31, 2012
- Percent complete 6%

Budget

- Total funding: \$5,097,592
 - DOE* share: \$2,548,796
 - Contractor share: \$2,548,796
- Funding received in
 - FY09: \$0
 - FY10: \$16,919 (11/09-01/10)
- * we thank the California Energy Commission and the DOE Vehicle Technologies Program for their support and funding of this project

Barriers & Targets

- Early stage of development for thermoelectric (TE) devices in automotive HVAC applications
- TE coefficient of performance
 1.3 to cool and > 2.3 to heat
- Reduce HVAC energy by > 30%
 Partners
- Interactions / collaborations
 - University of California Berkeley: Thermal Comfort testing & modeling
 - Delphi Thermal Systems:
 HVAC component development
 - University of Nevada Las Vegas: Thermoelectric materials research (beginning in April 2010)
- Project lead General Motors

Objectives

- Reduce the fuel used to maintain occupant comfort by at least 30% through the use of thermoelectric technology
- Develop TE HVAC components that have a coefficient of performance > 1.3 for cooling and > 2.3 for heating, then integrate & test as a system in 5-passenger demo vehicle
- Develop Thermal Comfort model to predict the response to localized heating and cooling through human subject testing
- Enhance the Virtual Thermal Comfort Engineering CAE tool to analyze localized heating and cooling for future vehicles
- Develop new thermoelectric materials to improve efficiency of thermoelectric generators for engine waste heat recovery

Milestones

FY 2010

- Identified and prioritized a list of potential distributed heating and cooling components, and also developed a list of other potential approaches to improve HVAC system efficiency – Dec. 8, 2009
- Completed comparison of GM vehicle portfolio to selection criteria for TE HVAC demonstration vehicle – Jan. 27, 2010
- Completed identification of initial set of components for distributed heating and cooling development – Mar. 31, 2010
- Complete definition of Design of Experiments for testing of Mule vehicle – May 31, 2010
- Complete build of mule vehicle for Thermal Comfort evaluation – Aug. 31, 2010

Approach/Strategy

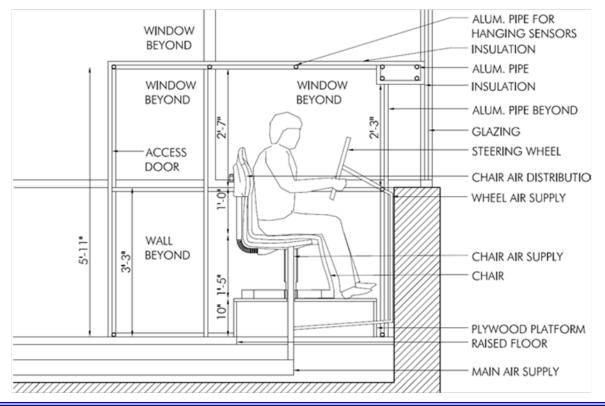
 Phase 1 – Develop Thermal Comfort model of human responses to potential locations for distributed heating & cooling

- Identify potential locations for distributed HVAC components and measure their physiological and psychological effectiveness
- Use automotive mockup in the UC-Berkeley environmental test chamber to perform human subject testing
- Use modified mule vehicle in Delphi Thermal's Climatic
 Wind Tunnel to perform human subject testing
- Update UC-Berkeley's Thermal Comfort model as the key component of the Virtual Thermal Comfort Engineering computer-aided engineering (CAE) tool used by GM and Delphi Thermal Systems

Approach/Strategy (cont.)

- Phase 2 Develop the initial prototype HVAC components and evaluate on bench & mule vehicle
 - Define control strategies and algorithms

<u>GM</u>


- Phase 3 Develop the final prototype HVAC components and evaluate on bench
 - Estimate HVAC system efficiency improvements
- **Phase 4** Integrate final HVAC components into demo vehicle and optimize system performance
 - Calculate efficiency improvements of HVAC system
- Phase 5 Develop new thermoelectric materials for waste heat recovery (in parallel with HVAC phases)

Technical Accomplishments and Progress

GM

 Completed the design of the automotive mockup, the procurement of components, and their assembly in the UC-Berkeley environmental test chamber

Technical Accomplishments and Progress (cont.)

- Discussed the human body parts that are key influencers of perceived thermal comfort; then identified and prioritized a list of potential distributed heating and cooling components
- Collaboration between General Motors, Delphi, and UC-Berkeley on ranges of operating parameters (e.g., flow rates) for evaluating HVAC components
- UC-Berkeley performed pilot human subject tests and then identified the initial set of distributed heating and cooling components for development

Technical Accomplishments and Progress (cont.)

- Developed a list of vehicle selection criteria to aid the development of the distributed HVAC system
- GM applied the selection criteria to the vehicle portfolio plan and chose the new Cadillac SRX for this project. Mule & demonstration vehicles will be purchased with automatic tri-zone HVAC systems and heated & cooled seats; this places ductwork in locations that support our development activities
- Vehicle selection allowed Computational Fluid Dynamics Analysis to begin
- Developed a list of other potential approaches to improve HVAC system efficiency in demo vehicle 9

Collaboration and Coordination with Other Institutions

- University of California Berkeley: Human subject testing & Thermal Comfort modeling
- Delphi Thermal Systems: HVAC component development and testing
- University of Nevada Las Vegas: Thermoelectric materials research
- General Motors Advanced Engineering and R&D: Vehicle requirements and system integration, Thermoelectric materials research

Proposed Future Work

• Complete Phase 1 activities by Apr. 30, 2011

- Use automotive mockup in the UC-Berkeley environmental test chamber to perform primary human subject testing
- Use modified mule vehicle in Delphi Thermal's Climatic
 Wind Tunnel to perform additional human subject testing
- Update the UC-B Thermal Comfort model and incorporate into the Virtual Thermal Comfort Engineering CAE tool
- Complete identification of final set of components for distributed heating & cooling development – Apr. 30, 2011
- Go/No-Go: Can final set meet the performance objectives?
- Begin Phase 2 activities on May 1, 2011
 - Start to develop the initial prototype HVAC components

Summary – TE HVAC Project

- Quantify the physiological & psychological response of people to localized heating & cooling by updating the UC-Berkeley Thermal Comfort model
- Develop distributed HVAC components that provide localized heating & cooling of vehicle occupants through the use of thermoelectric technology
- Quantify the efficiency of a distributed HVAC system that locally heats & cools vehicle occupants versus a conventional central HVAC system that provides thermal comfort by heating & cooling the entire cabin
- Enhance the Virtual Thermal Comfort Engineering CAE tool to analyze and optimize the application of distributed HVAC components in future vehicles