Advancing Transportation Through Vehicle Electrification - PHEV

Abdullah A. Bazzi Chrysler Group, LLC June 9, 2010

Project ID # ARRAVT067

This presentation does not contain any proprietary, confidential, or otherwise restricted information

<u>Timeline</u>

- Project Start: September, 2009
- Project Complete: August, 2013
- 15% Complete

Budget

- Total Project Funding
 - ➢ DOE: \$48,000,000
 - ➤ Chrysler \$49,408,996
- Funding received FY09: \$0
- Funding for FY10: \$3.3M

- Battery performance across extreme ambient conditions
- Thermal management integration
- Charger technology
- Understanding customer usage of the PHEV technology

Barriers

Development Partners & Key Suppliers

 Behr America • Electrovaya • Hitachi • Delphi • Eetrex • Continental • CASCO Products • EPRI • Austin Energy • ERCOT • Michigan State University • University of Michigan • Sacramento Municipal Utility District (SMUD) • NextEnergy • UC Davis

Demonstration Partners

Sacramento Municipal Utility District (SMUD)
State of Colorado, DOT
State of North Dakota
New York State Energy Research and Development Authority (NYSERDA)
Commonwealth of Massachusetts
Austin Energy
State of Michigan
City of Kansas City, Missouri
Clark Co., NV
City of Yuma, AZ
Hawaii State Energy Office (in cooperation with US Military)
City and County of San Francisco

Objectives

 Demonstrate 140 pickup trucks in diverse geographies and climates, spanning from North Dakota to Arizona & Hawaii to Massachusetts, and across a range of drive cycles and consumer usage patterns applicable to the entire NAFTA region

HRYSLER

- Verify plug-in charging mode performance based on charger and battery model
- Verify AC power generation mode
- Prove product viability in "real-world" conditions
- Develop bi-directional (communication and power) charger interface
- Quantify the benefits to customers and to the nation

Milestones

Phase I: PHEV Development – 2009/10

- Supplier selection and component sourcing

- ☑ Conduct design and performance standardization
- Image: Simulate key systems prior to vehicle builds
- Order carrier vehicles for Ram Truck as well as HV Battery Packs, Chargers and Power Panels for Bench Testing
- Procure all components required for the 12 Development vehicles and build 12 trucks
- ☑ Finalize part and tooling costs and lead times for all components
- ✓ Kick off tool orders for components and builds
- ☑ Determine the material required date (MRD) for the parts

Approach

This presentation contains proprietary, restricted information and not to be distributed without prior permission from Chrysler Group L.L.C.

Technical Approach

Technical Approach

Data Recording Process:

Technical Approach

RAM CREW 1500

- The only plug-in hybrid truck available in the marketplace
- Does not compromise any of the standard pickup volume or utility
- Maintains trailer tow and gradeability advantage of standard truck
- Only full size truck with Advanced **Technology Partial Zero Emissions**

Hybrid Drive System Technology

 Next Generation Lithium Ion Battery

Charge Times

- 2-4hrs at 220V
- 6 -8 hrs at 110V
- Full Hybrid system function w/o Plug-in
- Fuel Economy (City)
- Charge Depleting 32MPG Electric Drive Range (City)
- 20 miles equivalent

Range 655 miles

- Transmission
- Advanced Technology Plug-in Hybrid

Brakes

functionality of on-board AC power

commercial grade diesel generators

generator fuel supply

- Regenerative Brake System

- 1-240V, 20A plug Cabin Receptacle
- Center Console

2 – 120V, 20A duplex

Auxiliary Power

Power Panel

Pickup Bed

- 1 120v, 20A plug Power On-The-Fly
- 120V / 240V, 60Hz AC
- Silent Mode
- 120V / 240V, 60Hz AC

Exterior Dimensions

- Vehicle Length
- 227.5"

Overall Height 74.8"

- **Body Width**
- 79.4"
- Ground Clearance
- 7.7" @ Curb Weight
- Approach / Departure
- 19.2º / 21.9º
- Breakover
- 15.2^⁰
- Track
- 68.1" Front
- 67.5 Rear
- **Turning Diameter**
- 45.3' Curb to Curb
- Wheelbase
- 140"

Powertrain

- 4.8kW Continuous Through: Engine Size / Type 5.7L Hemi V8
 - Maximum Power
 - 399 Horsepower
 - Maximum Torque
 - 390 ft-lb @ 4300 rpm
 - Transfer Case
 - 4x4

Axles

- 3.27 Axle Ratio
- 9.25 Light Duty Rear Axle
- Automatic Front Axle Disconnect (enhances fuel economy)

Capacities / Weights

- Curb • 5,900 lbs
- **Fuel Tank Capacity**
- 26 gallons
- GCWR
- 12,100 lbs
- GVWR
- 7,200 lbs
- Payload
- 1.300 lbs
- Towing Capacity
- 6,000 lbs
- **Cargo Box**
- 5'7" with two-tier loading

Wheels / Tires

Wheels

- 17" x 7.0" Aluminum Wheels (Steel Spare) Tires
- P265/70R17 BSW All
- Season Tires
- Full Size Spare Tire

Interior Dimensions

- Passenger Volume
- 120.9 Cubic Feet

Seating Capacity

- 6 Passenger 3F/3R
- Safety

Electronic Stability Program

- Traction Control
- ABS
- Brake Assist
- Electronic Roll Mitigation
- Hill Start Assisted
- Trailer Sway Control

Air Bags

- Advanced Multistage Front
- Supplemental Side Curtain
- Supplemental Front and Rear Curtain

Partner and Vehicle Allocation

CHRYSLER

PHEV Grant External Stake Holders

Partner and Vehicle Allocation

Partner	Central Location	Demonstration Fleet Quantity
Austin Energy - ERCOT - UT Austin	Austin, TX	14
NYSERDA - SUNY, Stony Brook	Albany, NY	14
Clark Co. Automotive Division - Nevada Energy - UNLV	Las Vegas, NV	10
State of Colorado	Denver, CO	14
City of Yuma, Arizona - Univ. of Arizona, Yuma	Yuma, AZ	10
SMUD (Sacramento Municipal Utility District) - Cal State U, Sacramento	Sacramento, CA	14
Commonwealth of Massachusettes - U of Mass, Amherst	Boston, MA	14
State of North Dakota DOT - U of North Dakota	Bismarck, ND	14
State of Michigan	Lansing, MI	4
City of San Francisco - UC Davis	San Francisco, CA	14
State of Hawaii - U.S. Army - HNEI, UofHawaii Manoa	Honolulu, HI	14
Next Energy	Detroit, Mi	1 Development Vehicle
City of Kansas City, Mo	Kansas City, MO	4
	GRNAD TOTAL	140

Partner and Vehicle Allocation

The cumulative mileage for the entire 140 Vehicle fleet is estimated to be 6,525,000 miles.

Shows the cumulative number of days the demonstration vehicles will be deployed in **Colder** ambient temperature per year. The total estimated mileage accumulation for the cold temperature zone over three years of the demonstration program will be at least 2,925,000 miles. Of the total cold zone miles, approximately 1,023,750 miles will be driven in sub freezing (less than 32 deg F) temperatures.

Shows the cumulative number of days the demonstration vehicles will be deployed in **Hot** ambient temperatures per year. The total estimated the mileage accumulation for the hot temperature zone over three years of the demonstration program will be at least 3,600,000 miles. Of the total hot zone miles, approximately 800,000 miles will be driven in greater than 90 deg F.

- Program Kick-Off
- Packaged and Designed PHEV Components
- Virtual modeling and simulation of PHEV technology
- Bench Testing of new PHEV components, software and calibrations
- Updated current HEV vehicle with PHEV Technology
 - i. Updated to latest Li-Ion Battery
 - ii. Updated controls for battery thermal module
 - iii. Updated controls and calibration for PHEV
 - iv. Updated thermal system for PHEV
 - v. Instrumented vehicle for PHEV testing & validation

Phase I: PHEV Development

- Complete Hot Weather Validation of vehicle software, calibration and component
- Complete vehicle durability and validation
- Calibration/Controls Development
- Charging system / basic grid interface
- HMI
 - i. Hybrid Human Machine Interface (HMI) Display
 - ii. Plug-In Charging HMI display
 - iii. Power Panel HMI Display
 - iv. Functional objective verification
- Fuel reduction
 - i. Emissions abatement
 - ii. Driveability
 - iii. Towing

Phase II: Build and Launch Prep

- Site preparation
- Customer/Dealer training
- Vehicle Prep and Delivery
- Build the 140 truck demonstration fleet

Phase III: PHEV Vehicle Demonstration

Summary

Successful Kick-Off of DoE PHEV Project

2VSI ER

- Management process established
- Virtual modeling and simulation of PHEV technology
- Designs and packaging completed for Development Vehicle Builds
- Built 12 PHEV Vehicles for vehicle validation and testing
- On track to meet program milestones and project deliverables