Mark P. B. Musculus
Combustion Research Facility
Sandia National Laboratories

FY 2010 DOE Vehicle Technologies Program Annual Merit Review
Advanced Combustion Engine R&D/Combustion Research
8:30 – 9:00 AM, Tuesday, May 10, 2011

Sponsor: U.S. Dept. of Energy, Office of Vehicle Technologies
Program Manager: Gurpreet Singh
Heavy-Duty Combustion Project Overview

Timeline
- Project provides fundamental research that supports DOE/industry advanced engine development projects.
- Project directions and continuation are evaluated annually.

Budget
- Project funded by DOE/VT:
 - FY10-SNL/UW: $660/115K
 - FY11-SNL/UW: $700/115K

Barriers
- Inadequate understanding of fuel injection, mixing, thermodynamic combustion losses, combustion/emission formation processes.
- Inadequate capability to accurately simulate these processes.

Partners
- University of Wisconsin
- 15 industry partners in the AEC MOU
- Project lead: Sandia (Musculus)
Heavy-Duty In-Cylinder Combustion Objectives

Long-Term Objective
Develop improved understanding of in-cylinder LTC spray, combustion, and pollutant-formation processes required by industry to build cleaner, more efficient, heavy-duty engines

Current Specific Objectives:

1. SNL - Quantify oxidation of piston-bowl soot remaining from main injection by narrow included-angle post-injections
2. SNL+UW – Characterize RCCI combustion using high-speed imaging diagnostics
3. SNL+UW - Define the in-cylinder conditions that govern flame propagation / distributed autoignition combustion modes
4. UW - Compare multi-mode combustion model predictions to measurements of combustion propagation
Heavy-Duty In-Cylinder Combustion Milestones

1. (SNL+UW) Demonstrate dual-fuel system in SNL heavy-duty optical engine.
2. (SNL+UW) Characterize combustion propagation for high-efficiency dual-fuel RCCI.
3. (UW) Compare multi-mode combustion model predictions to measurements of combustion propagation.
Approach: Optical Imaging and CFD Modeling of In-Cylinder Chemical and Physical Processes

- Combine planar laser-imaging diagnostics in an optical heavy-duty engine with multi-dimensional computer modeling (KIVA) to understand LTC combustion
- Transfer fundamental understanding to industry through working group meetings, individual correspondence, and publications
Collaborations

- All work has been conducted under the Advanced Engine Combustion Working Group in cooperation with industrial partners

- New research findings are presented at biannual meetings

- Tasks and work priorities are established in close cooperation with industrial partners
 - Both general directions and specific issues (e.g., UHC for LTC, soot in higher load conditions)

- Industrial partners provide equipment and support for laboratory activities
Accomplishments (19 slides)

Accomplishments for each of the four current specific objectives below are described in the following nineteen slides.

Current Specific Objectives:

1. **SNL** – Quantify narrow included-angle post-injections oxidation of piston-bowl soot from the main injection.
2. **SNL+UW** – Characterize RCCI combustion using high-speed imaging diagnostics.
3. **SNL+UW** – Define the in-cylinder conditions that govern flame propagation / distributed autoignition combustion modes.
4. **UW** – Compare multi-mode combustion model predictions to measurements of combustion propagation.
Previous data showed how post injections oxidize squish-soot, but bowl-soot remains.

- 2009 data showed that with a constant main injection, adding a post increases soot at small dwell, but decreases soot at larger dwell.
- Wide-angle (154°) injector: soot is split between bowl and squish.
- A late post-injection oxidizes soot, but only in the squish region.
- Most soot, in the piston bowl, is not affected by post injection.

How well can piston-bowl soot from the main injection be oxidized by post-injection into the bowl (narrow-angle inj.)?
Post-injections with narrow-angle provide similar soot-reduction as with wide-angle

- Narrow-angle (124°) injector yields much more exhaust soot (FSN 1.5 vs. 0.6)
- Post injection reduces soot, but only modestly (similar to 154°)

- Soot luminosity images show post-injection impinging on bowl-window and disturbing bowl-soot
 - Can significantly affect 2-color measurements
- In-cylinder 2-color KL data: considerable scatter, no clear trends.
Developed new GDI system to expand capabilities to dual fuels, premixed charge

- U. Wisc. (Reitz et al.) has shown mid-load $\eta_{th} > 50\%$ at 2010 PM/NOx in-cyl. with dual-fuel gasoline/diesel
- Presents both a modeling challenge and a diagnostic opportunity
 - Both distributed autoignition and flame propagation are possible.

- GDI side-injector system for gasoline fuels designed and installed in optical engine.
- UW modeling student (Sage Kokjohn) to visited Sandia for 8 months in FY2010/11
 - Optical diagnostic study of flame propagation / autoignition to improve model fidelity
Central Common-Rail + side-mounted GDI enable dual-fuel (RCCI) capability

- Bosch GDI (100 bar) mounted in place of side-window
 - Premixed charge of gasoline-like fuel
- 8-hole production Cummins XPI common-rail fuel injector (300-1600 bar) in cylinder head
 - Direct injection of diesel-like fuel
- Sprays illuminated using CW high-power LED white-light source through side-windows
LTC: RCCI with n-heptane & iso-octane

- No EGR
- GDI from top of view, CR in center
- High gain: cool flame visible, no soot

Fuel (net) PRF64 ($\phi=0.42$)
Intake 21% O_2 (EGR)
Load 4.3 bar IMEP
Intake T 90°C
Intake P 1.15 bar
GDI SOI -240° ATDC
CR SOI -57°, -37° ATDC
Speed 1200 rpm
Engine r_c 10.75
Window 100 mm diam
Framing 7200 fps
Gain 500
Filter 500 nm SWP
RCCI: Fuel reactivity and ϕ stratification are important for managing peak heat release rate

- Common-rail (n-heptane) SOI timing sweep creates range of equivalence ratio (ϕ) and reactivity stratification
- CA50 held constant at 2° ATDC by adjusting intake temperature
- Minimum peak AHRR: SOI= -50° ATDC
- Higher AHRR at both earlier and later SOI

Operating Conditions

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engine speed</td>
<td>1200 rpm</td>
</tr>
<tr>
<td>Gross IMEP</td>
<td>4.2 bar</td>
</tr>
<tr>
<td>Intake temperature</td>
<td>73 to 100 °C</td>
</tr>
<tr>
<td>Intake pressure</td>
<td>1.1 bar abs.</td>
</tr>
<tr>
<td>Inlet oxygen concentration</td>
<td>21 vol. %</td>
</tr>
<tr>
<td>CR SOI</td>
<td>-165 to -15° ATDC</td>
</tr>
<tr>
<td>GDI SOI</td>
<td>-240° ATDC</td>
</tr>
<tr>
<td>n-heptane mass (CR)</td>
<td>36%</td>
</tr>
<tr>
<td>iso-octane mass (GDI)</td>
<td>64%</td>
</tr>
<tr>
<td>Premixed equivalence ratio</td>
<td>0.27</td>
</tr>
<tr>
<td>Overall equivalence ratio</td>
<td>0.42</td>
</tr>
</tbody>
</table>

See back-up slide for still-image summary
Mid-range SOI (-50° ATDC) ignites in squish and burns gradually to center of cylinder

- Likely moderate fuel reactivity and concentration gradients at ignition

CR SOI: -50° ATDC
- Intake Temperature: 92° C
- Global equivalence ratio: 0.42

See back-up slide for still-image summary
Early SOI (-145° ATDC) ignites in pockets throughout chamber and burns quickly

- Likely low fuel reactivity and concentration gradients at ignition (HCCI-like)

CR SOI: -145° ATDC
Intake Temperature: 93° C
Global equivalence ratio: 0.42
Late SOI (-15° ATDC) ignites in jets (premixed burn), some mixing-controlled combustion

- Likely strong reactivity and concentration gradients with rich jet mixtures (diesel-like)

CR SOI:
-145° ATDC
Intake Temperature: 85° C
Global equivalence ratio: 0.42

*See back-up slide for still-image summary
Focused high-power laser beam pulse creates positionable plasma for spark ignition

- Focused laser beam (~100 mJ) creates plasma (spark)
 - Can probe ignitability of mixtures to explore combustion regimes (flame propagation/distributed autoignition)
- Multiple combustion modes achievable
 - Spark Ignition
 - For study of known flame propagation regime
 - HCCI
 - For study of known distributed autoignition regime
 - RCCI
 - Combustion strategy where both autoignition and distributed autoignition are possible
HTC: Conventional Spark-Ignition

- GDI only, throttled, near stoich.
- Laser spark at center
- High-speed chemiluminescence

Cycle 2

- Fuel: iso-octane (φ=0.95)
- Intake: 21% O₂
- Load: 4 bar IMEP
- Intake T: 30°C
- Intake P: ~0.5 bar
- Spark: -25° ATDC
- Speed: 1200 rpm
- Engine rₜ: 10.75
- Window: 100 mm diam
- Framing: 7200 fps
- Gain: 300
- Filter: 500 nm SWP

See back-up slide for still-image summary
Subsequent fuel-tracer PLIF shows GDI fuel (iso-octane) is not very uniform.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuel</td>
<td>PRF57 (φ=0.35)</td>
</tr>
<tr>
<td>Intake</td>
<td>21% O₂ (EGR)</td>
</tr>
<tr>
<td>Load</td>
<td>3.7 bar IMEP</td>
</tr>
<tr>
<td>Intake T</td>
<td>90°C</td>
</tr>
<tr>
<td>Intake P</td>
<td>1.15 bar</td>
</tr>
<tr>
<td>GDI SOI</td>
<td>-240° ATDC</td>
</tr>
<tr>
<td>CR SOI</td>
<td>-345° ATDC</td>
</tr>
<tr>
<td>Speed</td>
<td>1200 rpm</td>
</tr>
<tr>
<td>Engine r_C</td>
<td>10.75</td>
</tr>
<tr>
<td>Window</td>
<td>100 mm diam</td>
</tr>
<tr>
<td>Framing</td>
<td>7200 fps</td>
</tr>
<tr>
<td>Gain</td>
<td>500</td>
</tr>
<tr>
<td>Filter</td>
<td>500 nm SWP</td>
</tr>
</tbody>
</table>
LTC: RCCI with n-heptane & iso-octane

- No EGR
- GDI from top of view, CR in center
- High gain: very little soot, cool flame

Fuel (net) PRF64 ($\phi=0.42$)
Intake 21% O$_2$ (EGR)
Load 4.3 bar IMEP
Intake T 90°C
Intake P 1.15 bar
GDI SOI -240° ATDC
CR SOI -57°, -37° ATDC
Speed 1200 rpm
Engine r_C 10.75
Window 100 mm diam
Framing 7200 fps
Gain 500
Filter 500 nm SWP
Laser-spark to define combustion regimes

- Just before SOC, Laser spark in center of cylinder
- Center mixture does not support flame propagation

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuel (net)</td>
<td>PRF64 ((\phi=0.42))</td>
</tr>
<tr>
<td>Intake</td>
<td>21% O(_2) (EGR)</td>
</tr>
<tr>
<td>Load</td>
<td>4.3 bar IMEP</td>
</tr>
<tr>
<td>Intake T</td>
<td>90° C</td>
</tr>
<tr>
<td>Intake P</td>
<td>1.15 bar</td>
</tr>
<tr>
<td>GDI SOI</td>
<td>-240° ATDC</td>
</tr>
<tr>
<td>CR SOI</td>
<td>-57°, -37° ATDC</td>
</tr>
<tr>
<td>Engine (r_C)</td>
<td>10.75</td>
</tr>
<tr>
<td>Window</td>
<td>100 mm diam</td>
</tr>
<tr>
<td>Framing</td>
<td>7200 fps</td>
</tr>
<tr>
<td>Gain</td>
<td>500</td>
</tr>
<tr>
<td>Filter</td>
<td>500 nm SWP</td>
</tr>
</tbody>
</table>
• Just before SOC, Laser spark near piston bowl
• Bowl-edge mixture often supports flame propagation

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuel (net)</td>
<td>PRF64 ($\phi=0.42$)</td>
</tr>
<tr>
<td>Intake</td>
<td>21% O$_2$ (EGR)</td>
</tr>
<tr>
<td>Load</td>
<td>4.3 bar IMEP</td>
</tr>
<tr>
<td>Intake T</td>
<td>90°C</td>
</tr>
<tr>
<td>Intake P</td>
<td>1.15 bar</td>
</tr>
<tr>
<td>GDI SOI</td>
<td>-240° ATDC</td>
</tr>
<tr>
<td>CR SOI</td>
<td>-57°, -37° ATDC</td>
</tr>
<tr>
<td>Engine r_C</td>
<td>10.75</td>
</tr>
<tr>
<td>Window</td>
<td>100 mm diam</td>
</tr>
<tr>
<td>Framing</td>
<td>7200 fps</td>
</tr>
<tr>
<td>Gain</td>
<td>500</td>
</tr>
<tr>
<td>Filter</td>
<td>500 nm SWP</td>
</tr>
</tbody>
</table>
4 Models: flame propagation required to capture lift-off edge-flame, kinetics sufficient otherwise

- For both conventional diesel and LTC, combustion structure is virtually identical with (KIVA-G) or without (KIVA) flame propagation submodels (kinetics models are sufficient)

- Flame propagation sub-models are required to capture triple-flame structure at the lift-off location.

- Only non-negligible flame speed is in nose-like structure in near-stoichiometric region at lift-off length.
4 Models: RCCI mostly distributed autoignition, but some flame propagation locally

- For simulations of a heavy-duty engine at many RCCI conditions, the global combustion characteristics can be captured without consideration of flame propagation.

- Models predict that most of RCCI combustion is dominated by distributed auto-ignition, though flame propagation is important in some regions, depending on local conditions (e.g., equivalence ratio).

![Simulations without flame propagation model](image)
Future Plans: High-efficiency dual-fuel experiments and modeling, LTC soot, and multiple injections

- Probe in-cylinder mixing and combustion processes of high-efficiency dual-fuel operation
 - Build a fundamental understanding of in-cylinder processes that contribute to improved efficiency.
 - Incorporate insight and validation data from optical experiments exploring transitions from distributed autoignition to flame propagation to improve model fidelity

- Explore multiple-injection efficiency and emissions
 - Quantify emissions and efficiency improvements across wide parameter space to identify critical requirements
 - Use laser diagnostics (fuel-tracer, formaldehyde, and OH PLIF) to understand governing in-cylinder mechanisms

- Build understanding of in-cylinder LTC soot and PAH
 - Use multiple laser wavelengths and high-temporal-resolution imaging/spectroscopy to track PAH growth and conversion to soot
Improved understanding of in-cylinder LTC spray, combustion, and pollutant-formation to help industry build cleaner, more efficient, heavy-duty engines

1. (SNL) Narrow-angle injection: higher soot than wide-angle, but similar post-injection oxidation

2. (SNL+UW) New GDI enables RCCI, high-speed imaging shows heat release affected by reactivity gradients

3. (SNL+UW) Laser-spark ignition probe combustion regimes for understanding and model development

4. (UW) Models predict most combustion dominated by kinetics, but flame propagation important locally
Summary: Fuel reactivity and ϕ stratification important for managing peak heat release rate

- Over- or under-stratification results in rapid energy release.
- Early SOI: Low reactivity & concentration gradients (HCCI-like)
- Mid-range SOI: Moderate reactivity & concentration gradients (RCCI)
- Late SOI: Strong gradients with rich jet mixtures (diesel-like)
With dual-fuel injection and laser ignition, multiple known combustion modes achievable

- Combustion regimes for RCCI and other LTC (and conventional) strategies may span from flame propagation to distributed autoignition
 - Can be important for both modeling and high-efficiency operation
- Defined combustion regimes provide reference for optical diagnostics

Spark Ignition: Flame Propagation

HCCI: Distributed Autoignition
• GDI sprays (100 bar) are first, entering at top of field of view
 – Creates premixed charge of iso-octane (PRF 100)
• Common-rail sprays (600 bar) occur in two injections, emanating from centrally located injector in cylinder head
 – Direct injection of n-heptane (PRF0)
• Gives overall PRF=64
• Sprays illuminated using CW high-power LED white-light source through side-windows