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Project History

• Initial CRADA signed and project initiated in February 2007 
– Deactivation mechanisms of urea SCR catalysts
•Annual budgets were smaller than planned so some work 
was de-scoped
•CRADA extended and expanded to now also include HC 
trap studies in October 2010, total budget remained as 
initially agreed
•Finish – September 2012
•The project now consists of two parts that will be discussed 
separately:
• Deactivation of zeolite-based urea SCR catalysts 

– Chuck Peden (P.I.)
• Development of Hydrocarbon Adsorber Materials 

– Jong Lee (P.I.)
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Approach

• Ford tasks:
– Procure urea SCR catalyst and HC trap materials

• Commercial materials, model and doped zeolites
– Laboratory, engine and vehicle aging of materials
– Laboratory and engine performance testing
– Provide aged materials for PNNL characterization
– Develop refined laboratory aging protocols

• PNNL tasks:
– Use PNNL/IIC’s state-of-the-art tools to characterize sets 

of laboratory- and engine-aged samples provided by Ford.
– Correlate materials characterization results with 

performance data (provided by Ford), and with changes in 
catalyst surface chemical properties as a function of wide 
array of laboratory and engine aging conditions.

– Use this information for determining important mechanisms 
for performance and activity degradation.

PNNL Catalyst 
Characterization Facilities
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CHA Zeolite 
(SAPO-34, SSZ-13)

MFI Zeolite (e.g., ZSM-5)

FAU Zeolite 
(e.g., Y)

Zeolite Materials are Focus for 
both Program Elements

• Zeolites are microporous, aluminosilicate minerals
• Widely used as sorbants and catalysts (e.g., petroleum refining)
• ~200 unique zeolite frameworks have been identified, and over 

40 naturally occurring zeolite frameworks are known

BEA Zeolite (beta)
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The project consists of two parts:

- Deactivation of zeolite-based urea 
SCR catalysts – Chuck Peden (P.I.)

- Development of Hydrocarbon 
Adsorber Materials - Jong Lee (P.I.)
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Project Overview

Timeline

Budget

Partners

Barriers
• Start – February 2007
• CRADA extended and 

expanded (now also 
includes HC trap 
studies to be discussed 
separately) in FY11
• Finish – September 

2012

•DOE funding for 
urea SCR studies in 
FY11:  $150K

• Discussed on next 
slide

• Institute for Interfacial 
Catalysis, PNNL
• Ford Motor Company
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Barriers

● Lean-NOx emission control technologies, including urea 
selective catalytic reduction (SCR) are needed to enable 
wider use of fuel-efficient diesel engines.

● Regulations impose challenging requirements for catalyst 
activity and durability, with durability especially difficult 
due to a relative lack of experience with this new 
technology.

● As such, there is a critical need to develop realistic 
laboratory aging protocols that effectively simulate 
engine aging induced catalyst deactivation.  For this, a 
fundamental understanding of the deactivation 
mechanisms is essential. 
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Purpose of the Work

• Develop an understanding of various aging factors 
that impact the long-term performance of urea 
selective catalytic reduction (SCR) materials in 
diesel vehicle applications.

• Improve the correlation between laboratory and 
engine aging.

• (Ford activity):  Use this fundamental 
understanding to develop realistic laboratory aging 
protocols, saving experimental time and cost.
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1. Sulfur poisoning of urea SCR catalysts that follow a 
diesel oxidation catalyst (DOC):

– Studies of sulfur poisoning of urea SCR catalysts look at effects of 
SO2 since this is the primary S-species in the exhaust.

– However, DOC’s (which typically contain Pt) will oxidize SO2 to SO3.
– Recent Ford work has shown significantly greater poisoning by SO3

than with SO2.
– PNNL has performed detailed studies to develop an understanding 

of the differing effects of these two sulfur species, and to identify 
mechanisms of poisoning.

FY 2011 Objectives/Activities

Recent accomplishments in a number of areas:
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2. Characterize the nature and distribution of phosphorus 
deposits observed on engine-aged urea SCR catalysts. 

3. Develop a detailed understanding of unusual 
hydrothermal aging of urea SCR catalysts observed at 
Ford:

– Initial results published in SAE paper by Ford researchers (Cavataio, et 
al.) that suggested possible way to obtain better HT performance.

– PNNL reproduced the Ford results in early FY10 on model catalysts.
– PNNL performed a considerable number of experiments over the last 

year to try to understand the nature of the active catalyst responsible for 
the unusual HT behavior.

FY 2011 Objectives/Activities

Recent accomplishments in a number of areas:

Will present highlights from the third 
area in the following.
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NOx Conversion After 
Hydrothermal Aging
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Under moderate aging conditions, 
large differences in SCR NOx
performance is observed above 
400°C.
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SAE 2008-01-1025



Reaction Conditions and Samples

• Base zeolite:  beta zeolite (Si/Al2 = 38) from Zeolyst
• Cu ion exchange:  solution ion exchange twice 
• Heat treatment:  900oC with and without H2O
• Reaction tests:
 NH3-SCR

– Catalyst:  0.11g 
– total flow rate:  500 sccm (~350 ppm NO, ~350 

ppm NH3 14% O2, 4%H2O in He)
 NH3-oxidation

– Catalyst:  0.11 g
– Total flow rate:  500 sccm (~350 ppm NH3, 14% 

O2, 4% H2O in He)
 Product analysis with FTIR
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Summary of Reaction Data 
– NH3 SCR

• Catalyst treated at 900°C for 1 hr 
without H2O shows highest activity at ~ 
250°C, but performance drops at 
higher temperature and even makes 
NOx above 400°C.

• Sample treated at 900°C for 2 hrs with 
2% H2O shows very similar behavior 
with Ford’s high temperature aged 
sample.

• Even more severely (10 hr) treated 
sample shows similar behavior but 
significantly lower activity.

• This behavior has some correlation 
with residual zeolite structure.
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Characterization of High-Temp Calcined
Cu-Beta by XRD, TEM and NMR

XRD and TEM
• Zeolite structure was maintained after calcination at 

900°C for 1 hour under air flow with 2% H2O.
• However, most of the structure was collapsed after a 2 

hour treatment using the same conditions.
• No evidence for bulk-like Cu species in XRD or TEM.

NMR
• Tetrahedral aluminum NMR peak 900°C 1h treated 

sample does not change.
• Sample treated at 900°C for 2h with water loses 

significant amounts of tetrahedral aluminum, consistent 
with XRD and TEM results. 

• However, a peak due to octahedral aluminum does not 
form which may mean that Cu strongly interacts with the 
produced aluminum species.
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Summary of Initial Studies

 Cu-beta treated at 900oC for 2 hours with H2O shows 
similar reaction profiles with Ford’s high-temperature 
aged sample.

 Partially collapsed structure seems to account for the 
unique NH3-SCR activity behavior of these intermediately 
aged samples.

 No evidence in TEM and XRD for bulk-like Cu species.  
 NMR results indicate a strong interaction between Cu 

and Al in the aged catalysts that show good high-
temperature NH3-SCR performance.
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BEA Zeolite (Viewed along [100])

What may be occurring during 
hydrothermal deactivation of zeolites?

Hydrolysis of Si-O-Al bonds 
results in removal of Al species 
from the zeolite framework.
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• A series of Cu on gamma-alumina with various loadings of Cu (e.g., see 
Kwak, J.H.; Hu, J.Z.; Mei, D.; Yi, C. W.; Kim, D.H.; Peden, C.H.F.; Allard, L.F.; 
Szanyi, J. Science 2009, 325, 1670-1673).

• De-aluminate a beta zeolite first and then impregnate Cu to various loadings.
• Impregnate various loadings of Cu on our monolayer alumina/MCM-41 or 

/SBA-15 materials.(e.g., see Herrera, J.E.; Kwak, J.H.; Hu, J.Z.; Wang, Y.; 
Peden, C.H.F., J. Topics in Catalysis 2006, 39, 245-255) – See Extras.

Possible Candidate Catalyst Structures



NH3 SCR on Cu/alumina
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•CuO clusters at high Cu loading 
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Activities for Next Fiscal Year

• Complete mechanistic studies of 
phosphorus deactivating effects .

• Detailed studies of hydrothermal 
dealumination in Cu-SSZ-13 (CHA).

• Preparing additional CHA zeolite for 
joint Ford/PNNL studies of Cu 
loading effects (aimed at HT 
performance).

• Some new focus on:
• SCR degradation mechanisms 

due to upstream LNT;
• SCR deactivation due to use of 

biofuels.

Cu-
SSZ-13
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Summary
• PNNL has been carrying out a CRADA program with 

Ford Motor Company to study deactivation mechanisms 
in zeolite-based urea SCR catalysts.  A specific goal of 
this work is to use this fundamental information to 
develop realistic laboratory aging protocols.

• Technical progress to date has included correlation of 
catalyst characterization with performance of laboratory-
and field-aged samples, studies of the variable effects of 
SO2 versus SO3 poisoning, and deactivation due to 
phosphorus.

• Hydrothermal aging of zeolite-based SCR catalyst shown 
to provide possible route to achieve high-temperature 
performance.
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The project consists of two parts:

- Deactivation of zeolite-based urea 
SCR catalysts – Chuck Peden (P.I.)

- Development of Hydrocarbon 
Adsorber Materials - Jong Lee (P.I.)



Overview

Timeline

Budget

Partners

Barriers

•Start – October 2010
•Finish – September 2012

• DOE funding in:
• FY11:  $125K

Upcoming stringent hydrocarbon 
emission standards
Increased HC emissions from 
advanced combustion, vehicle 
electrification & biofuel (E85)
Better understanding of the  HC 
adsorber materials for improved 
performance and durability

• Institute for Interfacial 
Catalysis, PNNL
•Ford Motor Company
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Objectives

• Help fuel-efficient advanced combustion engines meet the 
current and future HC emission standards with effective, 
inexpensive and reliable HC adsorber technologies

• Improve the understanding of interaction between engine-
out HCs and HC adsorber materials during the cold-start 
and the catalyst warm-up periods

Active Bypass HC Trap System Passive In-line HC Trap System
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How Does a Hydrocarbon Trap Work?
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Square channels 
on front face 
of HC Trap brick

Zeolite cage structure 
traps and holds 
hydrocarbon molecules 
at metal ion sites (Al-1) 
until precious metal 
catalyst in washcoat is 
hot enough to oxidize 
them.

Beta Zeolite
Catalyzed HC trap 
washcoats on 
ceramic honeycomb 
monolith 
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FY10/11 Activities at PNNL

Evaluate HC adsorption/desorption with single HC species
– Fuel-component (ethanol, toluene, n-dodecane), combustion products 

(propene) with/without H2O

1. Effect of Si/Al ratio
– ZSM-5, BEA
– Hydrophobicity on total HC adsorption capacity

2. Effect of pore size & structure
– Beta (Large 3D), ZSM-5 (Medium 3D), ZSM-12 (Large 1D)
– Size & shape selectivity, diffusion under transient conditions

3. Effect of metals
– Ag, Pd, Cu, Fe, Ba 
– HC chemisorption & reactions (partial oxidation, oligomerization)
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Effects of Hydrothermal Aging

• After HTA, little change seen in XRD patterns
• However, loss of BET surface area (estimate only) despite 

lack of change in XRD results
• Mesopores seen in BEA (30), ZSM-5 (280)

*HTA:
• 10%  H2O 

in air
• 800oC/80h
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Effects of Hydrothermal Aging

• LT peak assigned to Lewis acid sites, HT peak to Brönsted 
acid sites

• Loss of acid sites and strength after HTA at 800oC/80h

26



Effects of Si/Al Ratio

• Lower number of acid sites with high Si/Al samples
• Significantly reduced number of acid sites after 

HTA, compared to surface area

Adsorbent NH3 Adsorption NH3 Adsorption
capacity (mL STP capacity

NH3/g adsorbent) (mol NH3/g adsorbent)
BEA-25-F 49.89603 2.228E-03
BEA-25-HTA 6.51759 2.910E-04
BEA-300-F 10.0797 4.500E-04
BEA-300-HTA 1.46575 6.544E-05

• Only ~10% lower surface area for 
BEA-300-HTA

27



Summary & Future Work

• Model zeolite samples were obtained/prepared to study 
the effects of physicochemical properties on HC adsorber
performance and durability.

• Loss of surface area and crystallinity were observed in 
select zeolite samples.

• Initial NH3/Py-TPD and lab reactor testing results 
indicate, despite lower hydrophobicity, lower Si/Al ratio 
zeolites appear more effective for HC adsorption and 
desorption.

• Complete characterization and performance evaluation of 
the first round model zeolite samples.

• Investigate the effects of pore size and connectivity on 
HC desorption, and the effects of metals on HC 
chemisorption and reactions.

28
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Effects of Aging on Surface Area

Sample BET SA (m2/g) Pore Size (A)

BEA (25) 700 <10

BEA (25) HTA 560 <10

BEA (300) 708 <10, 50

BEA (300) HTA 505 <10, 80

ZSM-5 (23) 400 <10

ZSM-5 (23) HTA 360 <10, 27(?)

ZSM-5 (280) 404 <10, 18

ZSM-5 (280) HTA 370 <10, 21

ZSM-12 (66) 330 <10

ZSM-12 (66) HTA 75 <10

• Loss of BET surface area (estimate only) 
despite little changes in XRD

• Mesopores seen in BEA (30), ZSM-5 (280)

*HTA:
• 10%  H2O 

in air
• 800oC/80h
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HC Adsorption/Desorption Testing

• Reactor setup and test procedure with a commercial sample
– Reactor system to handle both monolith and powder samples

• Ethanol adsorption/desorption (in progress)
– Temporal exposure to ethanol, followed by TPD
– Effects of H2O, aging, Si/Al ratio, etc. 

2001 Nissan Sentra PZEV
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