High Energy Density Ultracapacitors

Annual Merit Review, DOE Vehicle Technologies Program, Washington, D.C.

Patricia Smith
Thomas Jiang and Thanh Tran
NAVSEA-Carderock Division

9 May 2011

This presentation does not contain any proprietary or confidential information.
Overview

Timeline
• Project start date: 2008
• Project end date: 2012
• 50% Complete

Budget
• Funding received in FY09: $250K
• Funding for FY10: $350K
• Project cost shared by Navy (equipment utilization)

Barriers
• Energy Density
• Cycle Life
• Affordability
• Voltage Decay
• Abuse Tolerance
• Low Temperature Performance

Collaborators
• Michael Wartelsky (SAIC); Steven Dallek and Glenn Zoski (Spectrum Technology Group)
 - Thermal stability of electrode materials
 - Electrolyte assessment
• Deyang Qu (University of Massachusetts, Boston)
 - Assessment of carbon materials
• Steve G. Greenbaum (Hunter College of CUNY)
 - Stability of SEI layer
• Linda Zhong (Maxwell Technologies)
 - Ultracapacitors
• Jae Sik Chung (PCTest)
 - ARC Testing
Why Ultracapacitors? Relevance of Project

Strengths
- High specific power → Good for power assist
- Fast charge acceptance → Good for regenerative energy capture
- Excellent cycle life → Fewer replacements required
- Excellent low temperature performance → Good for engine start

Weaknesses
- Low specific energy → Limited operational time
- High self discharge → Requires frequent charge

Advantages of Hybridizing Battery and Ultracapacitor
- Reduced battery operating current. Lower I^2R heating.
- Reduced power pack weight.
- Extended battery life. Reduce replacement cost.
- Better low-temperature performance for cold engine starts.

Energy Density: 3 Wh/kg
Power Density: 650 W/kg
Operating Range: -30 to +52°C
Survival Range: -46 to +66°C
Cycle Life: 750,000 cycles

FreedomCar UC EOL Requirements

<table>
<thead>
<tr>
<th>System Attribute</th>
<th>12V Start-Stop (10%)</th>
<th>48V Start-Stop (1%)</th>
<th>48V Trapezoidal Power (10%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discharge Power (W)</td>
<td>4.3 kW</td>
<td>2×</td>
<td>2×</td>
</tr>
<tr>
<td>Regenerative Power (W)</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Cold Cranking Power (20°C)</td>
<td>4.2 kW</td>
<td>7 V·A</td>
<td>8.5 V·A</td>
</tr>
<tr>
<td>Available Energy (Wh)</td>
<td>15 Wh</td>
<td>50 Wh</td>
<td>80 Wh</td>
</tr>
<tr>
<td>Recharge Rate (W)</td>
<td>844 W</td>
<td>2.4 kW</td>
<td>5.8 kW</td>
</tr>
<tr>
<td>Cycle Life / Engine / Road / Mine</td>
<td>150k / 110k / 85k / 1000 miles</td>
<td>150k / 150k / 85k / 1000 miles</td>
<td>150k / 150k / 85k / 1000 miles</td>
</tr>
<tr>
<td>Self Discharge (25°C from Max. V)</td>
<td>+4%</td>
<td>+4%</td>
<td>+4%</td>
</tr>
<tr>
<td>Maximum Operating Voltage (Vdc)</td>
<td>17</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>Minimum Operating Voltage (Vdc)</td>
<td>9</td>
<td>27</td>
<td>27</td>
</tr>
<tr>
<td>Operating Temperature Range (°C)</td>
<td>-30°C to +52°C</td>
<td>-30°C to +52°C</td>
<td>-30°C to +52°C</td>
</tr>
<tr>
<td>Survival Temperature Range (°C)</td>
<td>-45°C to +88°C</td>
<td>-46°C to +88°C</td>
<td>-46°C to +88°C</td>
</tr>
<tr>
<td>Maximum System Weight (kg)</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Maximum System Volume (L)</td>
<td>45</td>
<td>90</td>
<td>90</td>
</tr>
<tr>
<td>Selling Price / System (€/kWh)</td>
<td>80</td>
<td>90</td>
<td>90</td>
</tr>
</tbody>
</table>
Objectives

- Develop electrode/electrolyte materials that will enable an ultracapacitor to meet power assist and regenerative braking goals.
 - 15-20 Wh/kg, 650 W/kg at cell level
 - 30 to 52°C operational temp.
 - 750,000 - 1,000,000 cycles
 - -46 to 66°C survivability temp.

Approach

- Advance the lithium ion capacitor technology in order to meet the challenging vehicle energy density requirements.
- Identify high capacity/capacitance electrode materials to increase the energy density. Understand the physico-chemical properties responsible for high capacity/capacitance
- Explore new electrolyte solvent systems that have a wide electrochemical potential window and will allow the capacitor to meet cycle life and operating temperature goals
- Evaluate reactivity of electrode materials with electrolyte
Milestones

<table>
<thead>
<tr>
<th>Positive (Capacitor Electrode)</th>
<th>FY09</th>
<th>FY10</th>
<th>FY11</th>
<th>FY12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon surface area/pore size analysis</td>
<td>1Q 2Q 3Q 4Q</td>
<td>1Q 2Q 3Q 4Q</td>
<td>1Q 2Q 3Q 4Q</td>
<td>1Q 2Q 3Q 4Q</td>
</tr>
<tr>
<td>Electrochemical performance evaluation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electrode processing study</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Functional group analysis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Negative (Battery Electrode)</th>
<th>FY09</th>
<th>FY10</th>
<th>FY11</th>
<th>FY12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline technology evaluation</td>
<td>1Q 2Q 3Q 4Q</td>
<td>1Q 2Q 3Q 4Q</td>
<td>1Q 2Q 3Q 4Q</td>
<td>1Q 2Q 3Q 4Q</td>
</tr>
<tr>
<td>Activated-carbon graphitization investigation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electrode processing study</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Electrolyte</th>
<th>FY09</th>
<th>FY10</th>
<th>FY11</th>
<th>FY12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline electrolyte/electrode stability study</td>
<td>1Q 2Q 3Q 4Q</td>
<td>1Q 2Q 3Q 4Q</td>
<td>1Q 2Q 3Q 4Q</td>
<td>1Q 2Q 3Q 4Q</td>
</tr>
<tr>
<td>High voltage electrolyte investigation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SEI evaluation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mixed salt investigation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cell Evaluation (Full, 3-Electrode)</th>
<th>FY09</th>
<th>FY10</th>
<th>FY11</th>
<th>FY12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy density/cycle life/self discharge/temp</td>
<td>1Q 2Q 3Q 4Q</td>
<td>1Q 2Q 3Q 4Q</td>
<td>1Q 2Q 3Q 4Q</td>
<td>1Q 2Q 3Q 4Q</td>
</tr>
<tr>
<td>Safety Assessment</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Previous Technical Accomplishments

• The electrochemical performance of carbon materials derived from various precursor materials and activated by either steam, KOH or \(\text{H}_3\text{PO}_4 \) was investigated. Excellent performance (~160 F/g) was observed with carbons (~2,000 m\(^2\)/g) activated by KOH.

• Electrode processing techniques were assessed to ensure that the benefit of high capacitance carbons was not diminished with pore-blocking binders (PVDF, UHMWPE, PTFE). Positive electrode carbons were distributed to various electrode manufacturers. Electrodes utilizing PTFE binder yielded highest capacitances.

• Carbon’s functional group analysis was determined by Boehm Titrations. Thermogravimetric analysis (TGA) results show a correlation between weight loss and electrochemical performance.

• Three-electrode cell and full cell investigations of lithium ion capacitors utilizing either graphite or lithium titanate negative electrodes were conducted. Although the titanate promised greater cycle life, it did not yield the energy density of the graphite system (10-12 Wh/kg vs. 12-15 Wh/kg).

• The self discharge of three-electrode lithium ion capacitor and lithium titanate capacitor cells at 25°C was found to be lower (1-7%) than that of conventional ultracapacitors (17-19%).
Cells cycled at 25°C and 65°C exhibited excellent performance delivering 225 mAh (15 Wh/kg, 26 Wh/L). When the temperature was lowered, capacity was significantly reduced (~27% at -10°C, ~48% at -20°C, and ~73% at -30°C) compared to their performance at 25°C.
Ultracapacitors are known to have a much higher self-discharge rate than that of batteries. This can be a major limitation especially if they are used for standby purposes. The data revealed that the lithium ion capacitor has a significantly lower self-discharge rate than ultracapacitors.
Increased ESR Observed As Temperature is Lowered in 1st Generation Cells

Nyquist Plots of 500F LIC Cells at Various Temperatures

Plot of ESR vs. Cell Temperature

First Generation Electrolyte Solvents

<table>
<thead>
<tr>
<th>Solvent</th>
<th>Freezing Point</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethylene carbonate (EC)</td>
<td>39.4°C</td>
</tr>
<tr>
<td>Propylene carbonate (PC)</td>
<td>-49°C</td>
</tr>
<tr>
<td>Diethyl carbonate (DEC)</td>
<td>-43°C</td>
</tr>
</tbody>
</table>

Reduced cell capacity at -20°C and -30°C is attributed to an increase in cell resistance caused by EC’s high freezing point.
Understanding Performance Limitations of 1st Generation Lithium Ion Capacitor

- Positive and negative electrodes were harvested from 500F cells and placed in pouch cells.
- Reference electrodes allowed the monitoring of individual electrodes and identification of cell failure mechanisms.

Cell Voltage = (Positive Electrode vs. Li Ref.) – (Negative Electrode vs. Li Ref.)
The performance of 1st Generation 500F cells was shown to be limited by the positive electrode. The positive voltage drop ranged between 1.45V (25°C) and 1.18V (-10°C) while the negative electrode voltage drop ranged between 0.14V (25°C) and 0.42V (-10°C). As the temperature was lowered, the negative electrode began to polarize at a faster rate than the positive electrode.
Two carbonate electrolytes were evaluated. The selected two electrolytes A and B revealed \(\sim 150\% \) and \(\sim 53\% \) higher conductivity, respectively compared to that of the 1st generation lithium ion capacitor electrolyte at -20\textdegree C.
Effect of Electrolyte on Negative Electrode Performance, ½ Cell Evaluation (C vs. Li)

Voltage Range: 0.0 - 1.5 V, Charge/Discharge: 10 mA/g

The irreversible capacity loss of the 1st generation electrolyte was approximately equal to electrolyte “B” (34% and 31% respectively). Anode capacity was approximately 35% higher for cells using electrolyte “B” than cells containing the 1st generation electrolyte at -20°C. Experiments are presently being conducted for electrolyte “A”.

[Graph showing discharge capacity over cycle number for 25°C, 0°C, -10°C, -20°C, and -30°C for both 1st generation electrolyte (LiPF₆ in EC:PC:DEC) and electrolyte B.]
A lithium ion capacitor carbon electrode was compared to two commercially available carbon materials (MCMB-28, KMFC) in ½ cells containing Electrolyte B. The capacitor carbon’s irreversible capacity loss was found to be significantly greater (31% vs. 9%) than MCMB-28 and KMFC. The reversible capacity after 7 cycles was ~ 450 mAh/g. Efforts are on-going to investigate its long-term stability.
The positive electrode study showed a dramatic improvement in capacitance with electrolyte “A” at low temperatures. The following trend was observed in capacitance: Electrolyte “A”, 80 F/g (3.84 mS/cm @-20°C) > Electrolyte “B”, 49 F/g (2.36 mS/cm @-20°C) > 1st Generation Electrolyte, 20 F/g (1.55 mS/cm @-20°C).
Electrochemical Potential Window of New Electrolytes

Working electrode: Carbon positive electrode material
Sweep rate: 0.5 mV/s

1st Generation Electrolyte
(LiPF$_6$ in EC:PC:DEC)

Electrolyte A

Electrolyte B

All three electrolytes are stable to \sim 4.5 V vs. a lithium reference.
Fully-charged, 1st generation lithium ion capacitor anodes are much less thermally stable than a fully-charged ultracapacitor anode. Other components of the capacitors (fully-charged cathode, separator) displayed similar thermal behavior.
Self heating occurred in the lithium ion capacitor at ~ 90°C and the cell’s vent opened at 210°C. The temperatures reached as high as 400°C during the test. In comparison, the ultracapacitor demonstrated no measurable self heating and vented at 170°C.
Summary

• Three-electrode pouch cells were fabricated using electrodes harvested from the 1st generation 500F cells and containing 1st generation (baseline) electrolyte.
 – The limiting electrode was found to be the positive between at 50° and -20°C.
• A lithium ion capacitor negative electrode was compared to MCMB-28 and KMFC electrodes.
 – The capacitor carbon’s irreversible capacity loss with Electrolyte B was found to be significantly higher (31% vs. 9%) than MCMB-28 and KMFC. The reversible capacity after 7 cycles was ∼ 450 mAh/g.
• Two carbonate electrolytes were investigated and compared to the 1st generation electrolyte.
 – The new electrolytes A and B displayed ∼ 150% and ∼ 53% higher conductivity, respectively compared to that of the 1st generation electrolyte at -20°C. This paralleled the capacity/capacitance improvement achieved for both negative and positive cell studies.
• The safety assessment study was initiated
 – DSC data analysis revealed that a fully-charged, 1st generation lithium ion capacitor anode has a lower thermal stability than a fully-charged ultracapacitor anode.
 – ARC data analysis revealed that 1st generation, 2,000F lithium ion capacitor self heating occurred at approximately 90°C.
Future Work FY11-12

• Continue electrolyte solvent systems investigation to identify a system with a wide electrochemical voltage window and good low temperature conductivity.

• Assess safety and performance of new electrolyte system at both cell and material level. Compare to conventional ultracapacitor and lithium ion batteries. Utilize:
 – Solid-state 7Li NMR measurements to determine quantitatively the fraction of Li in the irreversible solid electrolyte interphase (SEI) layer as compared to Li in the active electrode. (Collaborative effort with Hunter College of CUNY)
 – DSC to determine the exothermicity of electrode/electrolyte reactions (ΔH).
 – ARC to determine thermal behavior of cells.

• Evaluate the stability of the 1st generation negative material. Identify higher energy, high-power density negative electrode materials for next generation lithium ion capacitor. (Collaboration with U of Mass.-Boston, Cabot, Ener2)

• Assess performance (energy/power) limitations of 2nd generation technology. Identify cell limitations.

Acknowledgements

The support of this work from DOE-EERE, Office of Vehicle Technologies (Mr. David Howell and Mr. Tien Duong) is gratefully acknowledged.
Comparison of Conventional Ultracapacitor and Lithium Ion Capacitor

Conventional Ultracapacitor

- 2 Non-Faradaic electrodes
- Energy stored electrostatically at the interface of electrolyte and electrodes
- High cycle life and long service life
- High power density
- Low energy density

Lithium Ion Capacitor (LIC)

- Combines Faradaic and non-Faradaic electrodes
- Higher energy density than conventional ultracapacitors due to increased capacitance and operating voltage, \(E = \frac{1}{2}CV^2 \)
- Requires sacrificial lithium electrode to pre-charge negative
Voltage Comparisons

Cell Discharge Profiles of Various Electrochemical Devices

- **Li Ion Battery**
- **Li Ion Capacitor**
- **Ultracapacitor**

Voltage Swing of Individual Capacitor Electrodes

- **Conventional Ultracapacitor**
 - Activated Carbon
 - Activated Carbon
 - ~4.4 to 3.7V

- **Lithium Ion Capacitor**
 - Activated Carbon
 - Li Doped Carbon
 - ~3 to 1.6V

Electrode Voltage vs. Li/Li

- 3.8V
- 2.2V