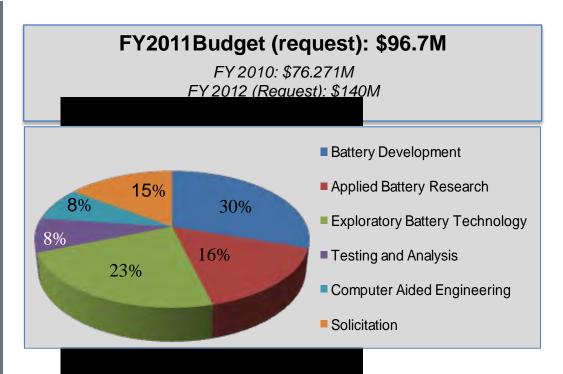


Hybrid Electric Systems

David Howell Team Lead



Battery R&D

CHARTER: Advance the development of batteries to enable a large market penetration of hybrid and electric vehicles.

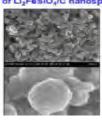
Program targets focus on enabling market success (increase performance at lower cost while meeting weight, volume, and safety targets).

2014 GOALS: Reduce production cost of a PHEV battery to \$300/kWh (70% below current value)

☐ Intermediate: By 2012, reduce the production cost of a PHEV battery to \$500/kWh (50% below current value)

Battery Development

Technical Targets


DOE Energy Storage Goals	HEV	PHEV (2015)		EV (2020)
		PHEV-10	PHEV-40	EV (2020)
Equivalent Electric Range (miles)	N/A	10	40	300
Discharge Pulse Power: 10 sec (kW)	25	50	38	80
Regen Pulse Power: 10 sec (kW)	20	25	30	40
Recharge Rate (kW)	N/A	1.4	2.8	5-10
Cold Crank Power:-30 °C/2sec (kW)	5	7		N/A
Available Energy (kWh)	0.3	3.5	11.6	40
Calendar Life (year)	15	10+		10
Cycle Life (cycles)	300,000 (shallow)	3,000-5,000 (deep)		1,500 (deep)
Maximum System Weight (kg)	40	60	120	300
Maximum System Volume (I)	32	40	80	133
Operating Temperature Range (°C)	-30 to +52	-30 to +52		-40 to +85

Battery R&D Activities

Advanced Materials
Research

SEM of Li₂FeSiO₄/C nanospheres

- ☐ High energy cathodes
- □ Alloy, lithium anodes
- ☐ High voltage electrolytes
- ☐ Lithium metal/Li-air

High Energy & High Power Cell R&D

- ☐ High energy couples
- ☐ High rate electrodes
- □ Fabrication of high E cells
- Cell diagnostics

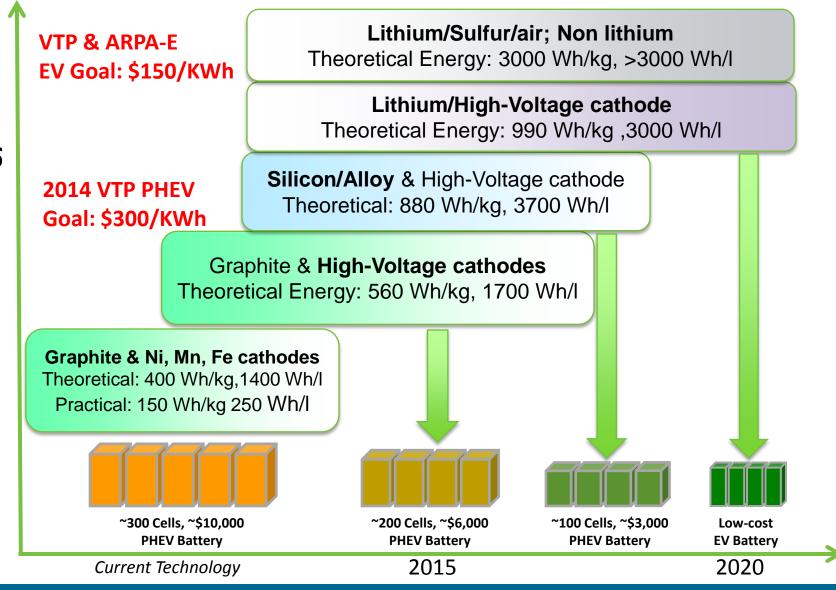
Full System

Development &Testing

Commercialization

- Electric Drive Vehicle batteries
- ☐ Testing, analysis, and design
- Cost reduction

115+ Lab, University, and Industry Projects


- □ Projects are competitively selected using independent experts
- ☐ Annual Progress Report available on-line

http://www1.eere.energy.gov/vehiclesandfuels/pdfs/program/2010_energy_storage.pdf

☐ Interaction with ARPA E, Office of Science, OE, DoD, NASA, International

Research Roadmap for 2015 & Beyond

Commercial Applications

DOE-funded technologies move to commercial applications

Several technologies, supported by VTP, have moved into commercial applications.

- ☐ 1990s focus Nickel Metal Hydride
 - Cobasys NiMH technology: Every HEV sold uses intellectual property developed in the DOE battery program. The US Treasury received royalty fees.
- ☐ 1998 focus High-Power Lithium-ion (HEVs)
 - Johnson Controls Saft (JCS) nickelate technology: BMW, Mercedes and Azure Dynamics/Ford Transit Connect
- □ 2004 focus High-Energy Lithium-ion (PEVs)
 - A123Systems nano iron phosphate technology: Fisker, BAE, Hymotion, Prius, Navistar
 - CPI/LG Chem manganese technology: GM Volt extended range PHEV, Ford Focus EV

American Recovery and Reinvestment Act

Goal (\$1.5B ARRA)

Participants (20 Companies)

Activities (20+ facilities)

Progress/ **Highlights** Accelerate the development of U.S. manufacturing capacity for batteries and electric drive components and the deployment of electric drive vehicles.

A123 Systems, JCI, SAFT, CPI-LG, General Motors, Dow-Kokam, Exide, East Penn, BASF, Toda, Celgard, ENTEK, EnerG2, Pyrotek, Future Fuel, Novolyte, Honeywell, Chemetall Foote, H&T Waterbury, TOXCO

Material Supply

Lithium Supply

Cell Components

- Cathode Production
- Anode Production
- **Electrolyte Production**
- **Separator Production**
- Other Components

Cell Fabrication

- Iron Phosphate
- Nickel Cobalt Metal
- Manganese Spinel

Pack Assembly

- Iron Phosphate
- Nickel Cobalt Metal
- Manganese Spinel Advanced Lead
- **Acid Batteries**

Recycling

☐ Lithium-Ion

Saft America lithium-ion battery plant groundbreaking in Jacksonville, FL

Toda America, Inc. Battle Creek Facility

A123Systems, Livonia Facility

☐ All projects were under way in 2010

- ☐ Production has begun at several facilities
 - Pack assembly at General Motors facility
 - Cell and pack assembly at A123Systems
 - Battery pack assembly at Johnson Controls
 - Separator material production at Celgard

Outlook for Battery Cost and EV Production Capacity

On Track to Meet Administration's Goal of 1 Million EVs by 2015

Vehicle Production Battery Cost Battery Production Capacity (announced, cumulative) (10 kWh packs) (\$ per kWh) **ARRA ATVM** 2008 \$1,000-\$1,200 2009 2010 \$700-\$950 2011 \$600-\$700 45,600 50,000 2012 223,200 Goal = \$500150,000 144,000 486,200 2013 2014 854,200 Goal = \$300500,000 488,000 2015 1,222,200

~10M kWh per year

production capacity in 2015

>8M kWh per year capacity

demand in 2015

Contact Information

David Howell
Team Lead
202-586-8055
David.howell@ee.doe.gov

www.vehicles.energy.gov