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Overview
Timeline

 Project start FY07

 Project end FY12

 80% complete

Budget

 FY09 = $100 K (DOE)

 FY10 = $200 K (DOE)

 FY11 = $67.4 K* (DOE)
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Barriers

 Role of residual stresses in thin tribological
coatings and its implications to the coating 
performance and reliability is not well characterized 
or understood

⇒ accurate stress/strain profiling not available 
⇒ analysis and interpretation of data
⇒ adhesion energy measurements are not trivial
⇒ correlations of coating processing, stresses

and performance is quite complex

Partners
 Borg Warner
 Galleon International
 Hauzer Techno Coatings, Inc.

This project complements the overall effort in the area of development of low friction 
high wear resistant coatings for vehicle applications

*Continuing resolution, funds received



Relevance
 Minimizing friction and wear in vehicle drive trains and engine  

components that accounts for 20-30% of fuel consumption can 
significantly reduce parasitic energy losses, and consequently, will result 
in petroleum displacement

 Performance (low friction and wear) of tribological coatings and its long-
term durability is strongly dependent on the residual stress profiles in 
the coating and at the coating/substrate interface; thus, it is critical to 
understand residual stresses in the coatings to extend component life 
and reduce life-cycle costs

 No reliable technique(s) available to profile residual stresses in thin 
coatings 

 Inter-relationships between processing, residual stresses, and coating 
performance not available

Develop and measure depth-resolved residual stress in thin coatings & correlate it 
to adhesion energy and tribological properties



Objectives
 Develop and refine high-energy x-ray  and/or scanning electron 

microscopic techniques to profile residual strains/stresses in super-hard, 
low-friction coatings for vehicle applications 

 Correlate residual stresses in coatings systems to processing technique 
and variables, material properties, adhesion energies, and tribological
properties 

 Develop a coating processing protocol to produce reliable coatings with 
engineered residual stresses for a specific coating system applicable for 
vehicles

 Transfer technology to industry

FY 10 – Measure adhesion energies and evaluate tribological behavior of MoN coatings; 
correlate to residual stress measurements



Milestones
 FY10 (all completed)

– Characterize mechanical properties of MoN and MoCuN coatings using 
nanoindentation

– Apply scratch testing to evaluate adhesion energy for MoCuN coatings 
fabricated at different processing conditions

– Correlate measured adhesion energies to residual stresses and processing 
conditions (MoCuN)

– Initiate tribological properties/performance of the MoCuN coatings

 FY11

– Characterize mechanical properties ZrN & TiC coatings fabricated under 
low and high deposition rates

– Characterize ZrN & TiC coatings for adhesion energy and tribological
properties

– Correlate the residual stresses and and coating mechanical/tribological
properties for coatings fabricated under different process conditions

– Develop collaborations with industrial producers of coated vehicle parts
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Approach
 Develop/refine high energy x-rays for profiling residual strains in thin coatings 

by measuring the change in the lattice parameter of the coating constituents
– tribological coatings ≈2-5 µm so they require meso-scale techniques with high depth 

resolutions (<1 µm)

 Deposit low friction high wear resistance coatings and profile residual stresses
– deposition power & rate
– composition

 Develop nanoindentation & scratch-based techniques to measure hardness, 
fracture toughness, and adhesion energy of thin coatings

 Relate residual stresses, mechanical & tribological properties, and processing to 
coating durability 

performanceresidual stressesprocessing



Strain measurement techniques

1. Cross-sectional microdiffraction

Scanning the cross section of  a film
using submicron mono x-ray beam.

2. Differential aperture x-ray microscopy (DAXM)

X-ray absorption wire acts as a differential aperture to separate 
information from different depths. (B.C. Larson et al. Nature 415, 
887 (2002)
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Accomplishments
Coating systems investigated: 

• MoCuN on H13 steel
• Fabricated in-house using PVD
• Mo bond coat
• Cu concentration
• deposition power & time varied

(A)

(B) TiC deposited on steel – high and low deposition rates   

(C) ZrN deposited on steel – high and low deposition rates 

Sample ID Mo & Cu
Deposition Power 
(kW)

Deposition
Time (s)

C70109 Mo:8; Cu:0 7200

C70110 Mo:8; Cu:0.5 6600

C61215 Mo:8; Cu:0.8 7200



 

 

 

Accomplishments

In-plane biaxial compressive stresses as a 
function of coating depth in the MoNCu coatings 
deposited on steel for various processing 
conditions

Depth-resolved stresses in MoNCu films

Mo: 8 kW, Cu: 0 kW, t = 7200 s

Mo: 8 kW, Cu: 0.8 kW, t = 7200 s

Mo: 8 kW, Cu: 0.5 kW, t = 6600 s



Mechanical behavior of MoNCu coatings
Accomplishments

Coating Hardness
(GPa)

Modulus
(GPa)

0Cu 22.4 ± 4.3 292.1 ± 28.2

5Cu 25.9 ± 5.5 317.8 ± 35.3

8Cu 23.0 ± 4.0 282.6 ± 16.0



Adhesion energy measurements of MoNCu coatings

Scratch Test Track Prior to Spall

Various Data Recorded During Scratch Test

Rockwell C 125 µm stylus

Loading rate: 10 mm/min

Test length: 5 mm

Max. Load: 50 N

Accomplishments



Adhesion Energy Measurements
 Microscope images of first feature on 0Cu scratch track

 EDS mappings confirm coating removal- first spallation

 Correlate position on scratch track to the critical load

70 µm

50 µm

10 µm Mo Fe

Accomplishments



Adhesion energy calculations

Xie and Hawthorne, Surface and Coatings Technology 141: 15-25, 2001.

σS = scratch test stress
R = indenter radius
P = critical load
Hf = coating hardness
H = substrate hardness
Ef = coating modulus
E = substrate modulus
W = Adhesion energy
K2 = constant (for spallation = .343)
σ = σR + σS = total stress
σR = residual stress
t = coating thickness
νf = coating Poisson’s ratio

Accomplishments
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Critical load & adhesion energy for various Cu deposition powers

Accomplishments



Wear rate 

Friction and wear resistance determined using ball-on-flat configuration

‒ Used silicon nitride ball, no lubricant, 30 minutes at 30 rpm

‒ Tested each coating at  25N & 50 N load (F)

‒ Total volume material removal (V) determined using profilometer

‒ Calculate wear rate (WR) from V,  F and total distance of wear test (l)

 Friction coefficient decreases slightly with increasing copper content

Accomplishments



Wear rate 

Wear rate highest for 8Cu, lower and similar 

for 0Cu and 5Cu

‒ Wear rate decreased with higher adhesion energy

‒ Wear rate increased with increasing Cu content

8Cu

0Cu

Accomplishments



0Cu 25N

Wear tracks: 25N

 SEM and EDS mappings correlate well with wear rate values

 More material removed for 8Cu than 0Cu and 5Cu

Mo Fe100 µm

100 µm8Cu 25N Mo Fe

Accomplishments



0Cu 50N Mo Fe

At 50N, much more material removed compared to 25N

0Cu and 8Cu have similar degrees of coating removal

Wear tracks: 50N

100 µm

100 µm

100 µm

0Cu 50N

8Cu 50N

Mo Fe

Mo Fe

Accomplishments



Spallation observed 
during scratch test

Damage mechanism during scratch and wear tests are similar

 Wear damage mechanism investigated using SEM/EDS
 At 25N, coating mostly still present, though removed in many spots

 Many damage mechanisms present simultaneously

 Abrasion and polishing: lines in coating track

 Chipping: cracks in coating

 Delamination: removal of coating from the substrate

 Reaction with Si3N4 ball: Si presence

Wear Damage Mechanisms 

0Cu 25N Mo Fe Si5 µm



Collaborations

 Since we have now completed correlations between residual 
stresses, adhesion energy, and tribological properties of in-
house produced coating system, we will now actively work 
with one of our industrial partners

 Initiated discussions on technology with industrial partners to 
obtain test samples

 U of Ohio, Athens, OH – residual stress analysis
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Path Forward

 Complete adhesion energy evaluations for TiC and ZrN

 Complete mechanical properties of TiC and ZrN coated samples for 
varying processing conditions

 Measure tribological performance for TiC, and ZrN coated samples

 Correlate the measured residual stresses in ZrN, TiC coatings to 
tribological properties and processing

 Initiate discussions with coating manufacturers for collaboration



Conclusions
 Cross-sectional microdiffraction have been used for studying strain gradient in 

nanocrystalline MoNCu films deposited on silicon and steel substrates. As-
deposited MoN film is under in-plane compression.

 Effects of Cu additions on coating adhesion and tribological performance was 
investigated.
– does not affect coating hardness or modulus
– reduces the residual stresses
– decreases the adhesion of coating to steel substrate
– decreases wear resistance of the coating
– delamination mechanism during scratch and wear tests appear to be similar

 Coating processing variables and resulting properties are correlated to their 
structure and can be used to optimized for enhanced tribological performance 
by optimizing adhesion energy.
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