Advancing Transportation Through Vehicle Electrification - PHEV

Abdullah A. Bazzi Chrysler Group LLC May 9, 2011 Project ID # ARRAVT067

Overview

Development Partners & Key Suppliers

• Behr America • Electrovaya • Hitachi • Delphi • TDI • Continental • CASCO Products • EPRI • Austin Energy • ERCOT • Michigan State University • University of Michigan • Sacramento Municipal Utility District (SMUD) • NextEnergy • UC Davis

Demonstration Partners

 Sacramento Municipal Utility District (SMUD) • State of Colorado, DOT • State of North Dakota • New York State Energy Research and Development Authority (NYSERDA) • Commonwealth of Massachusetts • Austin Energy • State of Michigan • City of Kansas City, Missouri • Clark Co., NV • City of Yuma, AZ • Hawaii State Energy Office (in cooperation with US Military) • City and County of San Francisco

DS Program Objectives - Relevance

 Demonstrate 140 pickup trucks in diverse geographies and climates, spanning from North Dakota to Arizona & Hawaii to Massachusetts, and across a range of drive cycles and consumer usage patterns applicable to the entire NAFTA region

CHRYSLER

- Verify plug-in charging mode performance based on charger and battery model
- Verify AC power generation mode
- Prove product viability in "real-world" conditions
- Develop bi-directional (communication and power) charger interface
- Support the creation of "Green" Technology jobs and advance the state of PHEV technology for future production integration
- Develop an understanding of Customer Acceptance & Usage patterns for PHEV technology
- Quantify the benefits to customers and to the nation

Project Overview : Approach & Timing

	2009			2010						2011															
Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun ı	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov
				Phas	e 1: PHE Aug '09	EV Devel – Sep. '1	opment 10					Pha	se 2: Bu Sept '1	lild & Lau 10 – APR	nch Prep '11				-	Phas Ma	e 3: Vehi y '11 – N	cle Demo lay. '14	D		
DS PH	EVTIMI			PM will reportin overviev	present the g reqt's and w including	e grant ove d the proje , planned	erview, ect	Will ac contra an upo	ldress any ctual issue date on tec	outstandi s and pre hnical pro	ing sent ogress.	Have indep each progr DOE. A re	endent rev am area w view of the	viewers for vithin the e portfolio	Review of project. V progress t	f the techr Vill include to date, m	iical progre e an updat ilestones o	ess of the e on the completed,	First De Las Veg	monstratio as, NV(10)	n Fleet Ver & Yuma,	nicle Deplo , AZ(10)	yments.		
born				activitie	s, mileston	les, and fir	nancial	This is	a go/no-g	o decisio	n point	of projects	for the pro	ogram	upcoming changes.	mileston	es, and dis	cuss any		Peer Will in techr	Review of nclude pro nical accor	the DS pr ject overvi nplishment	ogram in \ iew, milest s, and pee	Vashingtor ones comp r group dis) D.C.)leted, scussion.
	 					DoE	Kick off M	tg Pro	ject Status	Review	An	l nual Progr	am Review	, ,	Project Revie	ew Firs	t Vehicle D	eployment	Projec	t Peer Rev	iew		An	ual Progra	Im Review
					1							DSD	emo Fleet F	Builds											
		Initial D Builds	ev			DS Dev Builds	Veh	 	1	•	IS S2 Veh I	βld 8/16/10 Ι	 			 		FMV:	SS Com	pliance				1	
									i i	Bu	ild Demo	Fleet: 1	40 DS vel	hicles		1	1								
	1					l	i					i	i I			Retrofit	Demo Fl	et: 140 D	S vehicle	es 🔶			i	i	
	I I				י ע			į	i				1	i i	i	I	1		De	monstrat	ion testin	ng and da	ta valida	ion	
						Prototy	pe build '	12 DS DV	vehicles				 		Upgrade (Instrum	/retrofit entation	Ph1 build , data col	l vehicles lection,			Bi direct charger	tional (Re developn	everse Po nent	wer Flow)
Vehic	le integra	ation and	function	al check	of key hy	/brid con	nponents					1			Infrastru	cture)					mart grid levelopm	d interfac ent	e		
	Suppli	er integra	ation												i i				Da	ta analysi del devel	is/ custor	mer beha	vior		
	Systen	n check	ion									1			Detailed	deployr	nent plar	าร		istomer a	ccentanc	o/ HMI st	udv		
	Contro	ls develo	pment									1	1								cceptanc		l l	-	
	Calibra	tion dev	elopment		1			i	i						i i	Site p	rep at pa	rtner dep	loyment	locations			>		
	1	l				I						1	1				I		GH	G reduct	ion mode	el verifica	tion		
Bench	validatio	on of con	ponents	and sub	systems											i			Pe	troleum o	onsump	tion pred	iction ve	rification	
	Accele	rated ho	/ cold/ al	titude an	nbient ve	rification						1	1				Custom	er / deale	r training	9			> ¦		
	Chargi	ng syste	n/ basic	grid inte	rface veri	fication						I	I				.		Ele	ectricity c	onsump	tion from	grid ana	lysis	
	Auxilia	ry powe	outlet fu	inctional	verificati	on						1	1				Vehicle	prep for o	delivery t	o demon	stration p	partners			
	Functio	onal obje	ctive veri	fication:	fuel redu	ction, en	nissions	abatemer	it,				Extended	PHEV dev	velopment		I					1	-		
	unvabi	iity, town	ig									1	I						Vo	rify other	financial	& progr	am object	ives	
					i I							l	l	i	i		I		VC	iny other			ann objec	ives	
Projec	t manag	ement /	DOE Op	en forun	n - BiWe	ekly Coi	nference	Calls												,					
Projec	t manag	ement /	alignmei	nt with p	oroject o	bjective	s and bu	dgets- N	lonthly r	neeting	s														
	1	Win	ter Tes	ting				Sum	mer Te	sting		1	1	Win	ter Test	ting	1								
Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Technical Approach

Technical Specifications - Accomplishments

RAM CREW 1500

- 6000 pounds towing and 32% grade capability.
- · Only full size truck with Advanced **Technology Partial Zero Emissions**

Plug-in Hybrid	Technical Specit	fications			
 Hybrid Drive System Technology Next Generation Lithium Ion Battery Charge Times 2hrs at 220V 5hrs at 110V Full Hybrid system function w/o Plug-in 	Auxiliary Power • 6.6kW Continuous Through: Power Panel • Pickup Bed • 2 – 120V, 20A duplex • 1 – 240V, 20A plug Cabin Receptacle • Center Console • 1 – 120v, 20A plug	Powertrain Engine Size / Type • 5.7L Hemi V8 Maximum Power • 399 Horsepower Maximum Torque • 390 ft-lb @ 4300 rpm Transfer Case • 4x4			
 Charge Depleting 32MPG Electric Drive Range (City) 20 miles equivalent Range 655 miles Transmission Advanced Technology Plug-in Hybrid 	Power On-The-Fly • 120V / 240V, 60Hz AC Silent Mode • 120V / 240V, 60Hz AC Exterior Dimensions Vehicle Length • 227.5"	 Axles 3.27 Axle Ratio 9.25 Light Duty Rear Axle Automatic Front Axle Disconnect (enhances fuel economy) 			
BrakesRegenerative Brake System	Overall Height • 74.8" Body Width	Capacities / Weights Curb			
	 79.4 Ground Clearance 7.7" @ Curb Weight Approach / Departure 19.2° / 21.9° Breakover 15.2° 	Fuel Tank Capacity • 26 gallons GCWR • 12,100 lbs GVWR • 7,200 lbs			

· Features the unique utility and functionality of on-board AC power Is a low cost alternative to aftermarket commercial grade diesel generators Eliminates the need for a separate generator fuel supply

- 6,000 lbs Cargo Box
- 5'7" with Ram Box

Payload

• 1,000 lbs

Towing Capacity

Wheels / Tires Wheels

• 17" x 7.0" Aluminum Wheels (Steel Spare)

Tires

- P265/70R17 BSW All Season Tires
- Full Size Spare Tire

Interior Dimensions **Passenger Volume**

- 120.9 Cubic Feet Seating Capacity
- 6 Passenger 3F/3R

Safety

Electronic Stability Program

- Traction Control
- ABS
- Brake Assist
- Electronic Roll Mitigation
- · Hill Start Assisted
- Trailer Sway Control

Air Bags

- · Advanced Multistage Front
- Supplemental Side Curtain
- · Supplemental Front and Rear Curtain

Chrysler Group LLC reserves the right to make changes at any time, without notice or obligation, in prices, specifications, equipment, colors and materials, and to change or discontinue models. The data contained within this brochure should be regarded as approximate. Please note that some models and options may not be available in all markets. The vehicle's emissions are not fully certified and will have an exemption label displayed.

This presentation does not contain any proprietary, confidential, or otherwise restricted information

15.2°

• 68.1" Front

• 67.5 Rear

Wheelbase

140"

Turning Diameter

45.3' Curb to Curb

Track

Technical Accomplishments – Vehicle Build & Test

- Development and validation utilized the standard Chrysler Group LLC Vehicle Development Process for a production intent program.
 - Designed and built all development and test vehicles
 - Augmented development process with modified testing procedures to address specific plug in Hybrid Technologies
- Facility Based Testing: hot static cell, hot drive cell, cold static cell, cold drive cell, altitude chamber, engine dynamometer, transmission dynamometer, NHV cell, EMC cell, end of line; bench Testing: vibration, SOC, thermal, charge / discharge cycling
- Impact Testing: Successfully Completed for FMVSS compliance
- **Road trips:** development testing and verification: hot trip to 125F, cold trip to -20F, altitude trip to 12,000 ft
- **Durability testing**: powertrain, high mileage, two charge cycles per day.

- PHEV Specific Feature Development:
- Thermal management of Li-ion battery system capable of heating the high voltage battery in extreme cold, and cooling the high voltage battery in extreme hot ambient temperatures, optimizing the operating temp range.

- Developed powertrain control system to operate within the power limitations of the Li-ion battery over ambient temperature range of -20°F to 125°F while providing predictable and reliable vehicle performance
- Developed a PHEV truck capable of 7200 GVW & 12,100 GCWR capable of operating over temperature -20°F to 125°F
- Developed charging system capable of charging in excess of 6.6Kw
- Developing the inverter system to support power panel, V2G, and micro-grid functions up to 6.6 kW
- PHEV systems integrated cold start, cold drive, EV Drive, start/stop, thermal management, battery SOC operational boundaries, torque security validation, transmission dynamometer for E-Motor PHEV duty cycle

Technical Accomplishments – FE & Emissions

	Proposal	Status	Procedure
RANGE	Equivalent All Electric Range (EAER) of 20 miles	20+ miles EAER achieved	California Exhaust Emission Standards And Test Procedures, as amended December 2, 2009
EMISSIONS	ATPZEV Compliance	 SULEV TP emissions demonstrated for Charge Depleting (CD) City and Hwy Cycles. Charge Sustaining (CS) City, Hwy, US06, and ColdCO cycles. Based on testing with prior development test vehicles , SULEV TP emissions requirements can be met for 50F test and SC03 cycle. Met the PZEV Evap Emissions requirements for » Rig Test, based on the purge volume measurements during the 3bag City Cycle. Based on testing with prior development test vehicles , PZEV Evap emission requirements can be met for whole vehicle SHED test, ORVR and Running loss. 	California Exhaust Emission Standards And Test Procedures, as amended December 2, 2009
FUEL ECONOMY	Charge Depleting City 32 MPG	 FE CITY: Exceeded 32 MPG » Utility Factors (SAE J 2841) based - CD & CS are combined and reported as one number; Fuel Energy & Electrical Energy reported separately (no MPGe). » Vehicle kWh/100mi was calculated using a nominal charging system efficiency of 88%. Charger development ongoing. 	SAE J 1711, Date Published: 2010-06-08.

Key facilities & equipment used by Chrysler and demonstration partners at development & demo sites

Ohmuslan	Facilities / Infrastr	ucture	Equipment : All New
All Existing All Existing Warren T Chrysler Fuel Hot/ Chelsea Sled tract certi 	uck Assembly plan Technical Center – A Economy Testing, A Cold cell, Environme Proving Grounds – C impact testing site, on area, Mileage ac ication Center, Wind	t, Warren MI Auburn Hills, MI Altitude chamber, Static ental Drive cell Chelsea, MI Covered crash barrier, Skid cumulators, Emissions d tunnel	 ETAS Hardware – Automotive Electronic Control Unit (ECU) calibration ETK – ECU Interface ES – Measurement and Network Modules INCA Software – ETAS software for ECU calibration Matlab Simulink – General engineering data computation and analysis software CANoe Software – ECU simulation software CANalyzer Software – Analysis tool for data networks and distributed systems 140 EVSE Level 2 Charging Units Deployed to Partner Locations
	w • New: Charging S	station Infrastructure	
	Fristing: Wind T	unnel Performance lab	Existing: System Calorimeter
Clark Count		uniter, i chormanee lab	
	• Existing: Flex Fu	er stations, charging stations	
Colorado	Existing: Charging	ng Station Infrastructure	
Electrovaya			 New: Module impact assembly fixtures
MSU	Existing: Engine Controls Lab	Dynamometers, Fuel Spray Lab,	Existing: Single Cylinder Firing and Optical Engines
NextEnergy	New: MicroGrid	Power Test Pavilion	
SMUD	 New: Charging S Existing: Advance 	Station Infrastructure Sed Metering Infrastructure	
UM-D	Existing: Power Inst. of Advance Capability Lab, H	Electronics and Electric Drive Lab, d Veh Systems, Electromagnetic lybrid vehicle powertrain Lab	 New: Various Software and Hardware, see budget for detailed list
This pr	sentation does r	ot contain any proprietary,	confidential, or otherwise restricted information

Vehicle Charging Functionality

Data Reporting – Technical Accomplishments

Initial Fleet Deployment Implementation - May 2011

Partner and Vehicle Allocation

Partner Vehicle Deployment Plan

Partner **Fleet Activity** Qty **Deployment Date** Clark Co. Automotive City and Rural cycles Hot Climate Division 10 May-11 - Nevada Energy **High Mileage** City of Yuma, Arizona Hot Climate 10 May-11 Diverse drive cycle and use - Univ. of Arizona, Yuma Commonwealth of Massachusettes Diverse drive cycle and use 14 Jun-11 - U of Mass, Amherst NYSERDA Diverse useage 14 Jun-11 - SUNY, Stony Brook City and rural Cold Climate State of Michigan Jul-11 4 Diverse use High Altitude exposure State of Colorado 14 Jul-11 City and Rural cycles City Of Kansas City, Missouri Diverse drive cycle and use Jul-11 4 Cold Climate State of North Dakota DOT Aug-11 14 On and Off road - U of North Dakota Rural use of AC SMUD (Sacramento Diverse drive cycle and use Aug-11 14 Municipal Utility District) City of San Francisco 14 Aug-11 Diverse use - UC Davis Austin Energy - ERCOT Pool vehicles for the city of Austin 14 Sep-11 - UT Austin State of Hawaii - U.S. Army Sep-11 14 Diverse use - HNEI, UofHawaii Manoa Argonne National Lab **Technology Evaluation and Testing** 1 TBD

CHRYSLER

- Continue Hot & Cold Weather Validation of vehicle software
- Complete extended vehicle durability and validation
- Continue Calibration/Controls Development and Optimize Fully Integrated Systems
- Charging system / Implement Optimized Smart Charging, and Basic Vehicle to Grid (V2G) interface

CHRYSLER

- HMI Hybrid Human Machine Interface (HMI) Display
 - i. Plug-In Charging HMI display
 - ii. Power Panel HMI Display
 - iii. Functional objective verification
- Fuel Usage Reduction
 - i. Emissions abatement
 - ii. Driveability
 - iii. Towing

Phase II: Build and Launch Prep

- Site preparation Ship Level 2 EVSE Units for installation at Demonstration Partner Deployment Locations
- Customer/Dealer Service Training
- Build the 140 truck demonstration fleet
 - Install Remaining Batteries
 - Install Remaining Chargers

Phase III: PHEV Vehicle Demonstration

- Deploy Vehicles
- Capture Deployed Fleet Data to support Calibration and Controls development
- Enhance Data Reporting Capabilities
- Smart Grid & Reverse Powerflow
- Customer Interface Server

Summary

 Successful development, execution, and validation of the PHEV technology on engineering vehicles.

- Successful completion and deployment of the first 20 demonstration fleet vehicles.
- Successfully demonstrated the PHEV 20-miles All Electric Equivalent drive cycle.
- Successfully overachieved the fuel economy target of 32 mpg in charge depleting cycle.
- Demonstrated capability to meet ATPZEV emission requirements.
- On track to meet program milestones and project deliverables.
- Created "Green" Technology jobs and have a plan in place to sustain them toward future development of electrification programs.

Technical Back-Up Slides

RAM-1500 PHEV Battery System

X	CHRYSL	ER
---	--------	----

Supplier:	Electrovaya
Capacity	Pack: 12.9 kWhr
	Cell: 33 Ahr used 85% BSOC range
	Cell: 37.5 Ahr actual full capacity
Voltage	
Pack	390-288 VDC
Technology	Lithium Ion SuperPolymer [®]
	with MN-Series/Graphite chemistry

- State-of-charge (SOC) Estimation
- SOC Limits
- Voltage and Current Limits
- Power Limits
- Cell Balancing Strategy
- Contactor Control
- Diagnostics

Functionality:

- The Power Panel must be pre-enabled by remote starting the vehicle.
- Then, to turn the Power Panel On, press the ON/OFF button on the Power Panel (in the right rear Rambox bin). The green Ready light will illuminate on the Power Panel.
- To turn the Power Panel Off, press the ON/OFF button again.

Performance:

- Up to 6600 watts of total power is available through the combination of Power Panel outlets: (1) 240V/30A 4-prong outlet and (2) 120V/20A duplex outlets.
- The Power Panel has 20A circuit breakers for each of the 120V/20A duplex outlets.
- The OBCM provides protection for GFCI, short circuits, and 30A over-current for all the Power Panel outlets, and over-temperature protection for the inverters inside the OBCM. If any of these occurs, a red Fault light illuminates on the Power Panel.
- A warning (periodic horn chirp and lights flash) is emitted if the low fuel level warning occurs while the Power Panel is On.
- The propulsion system (gasoline and electric) and the Power Panel will be shut down if the fuel tank Distance to Empty (DTE) goes to "Low Fuel".

Scope/Objective

• 6.6 KW OBC with an integrated Inverter for AC Power Generation

Testing and Validation

- Charging Capability under various ambient temperatures and voltage ranges
- Power Output:
 - 6.6kW @ 220Vac
 - 1.4kW @ 110Vac
- Efficiency >95%
- Output Voltage 250Vdc 400Vdc
- Full Operating Temperature range @ -40C to 70C
- Air Cooled
- Level 1 & 2 J-1772 compliant
- CAN Vehicle communication interface:
 - Network Management
 - Flash/read application in vehicle
 - I/O CAN Diagnostic
- Environmental & EMC Requirements:
 - Vehicle Performance
 - Component Performance
 - Environmental Component Testing Specification
 - Vibration, Water Intrusion, Dust, Mechanical/Thermal Shock, High/Temp Endurance, Thermal Humidity.

RYSI ER

- Reliability/Durability Requirements
- Assembly/Service/Packaging/Labels

Scope/Objective

• Maintain Optimal Thermal Conditions for PHEV systems efficient operation

Testing and Validation

- Thermal Systems
 - HVAC Cabin heating and cooling performance maintained
 - A/C Refrigerant Compressor Variable Speed Control
 - Integration of Cabin Cooling and Battery Cooling Compressor Speed Control

INSI FR

- Battery Thermal
 - Battery Chiller & Heater Control Function, Pump Controls and Coolant Flow Confirmed
- Thermal System Controls
 - Cooling and Heating Calibrations (Aug '10 & Oct '10 respectively)
 - Thermal Management during Level II and I Battery Charging (Oct '10 & Nov '10 respectively)
 - System Pressure Drop, Battery Heat Rejection, Chiller Capacity, Refrigerant System Capacity - Module Correlation to after completion of vehicle testing