DoE SuperTruck Program

Technology and System Level Demonstration of Highly Efficient and Clean, Diesel Powered Class 8 Trucks

Principal Investigator: Donald Stanton (Cummins)

Presenter: Scott Newhouse

Peterbilt Motors Company

Project ID: ARRAVT081 12 May 2011

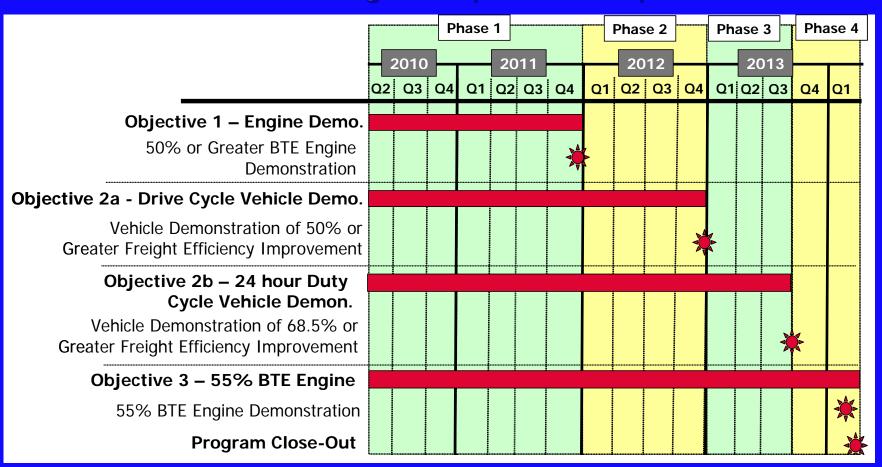
This presentation does not contain any proprietary, confidential, or otherwise restricted information

Relevance - Program Objectives (DoE Vehicle Technologies Goals)

Objective 1: Engine system demonstration of 50% or greater BTE in a test cell at an operating condition indicative of a vehicle traveling on a level road at 65 mph.

Objective 2

- a: Tractor-trailer vehicle demonstration of 50% or greater freight efficiency improvement (freight-ton-miles per gallon) over a defined drive cycle utilizing the engine developed in Objective 1.
- b: Tractor-trailer vehicle demonstration of 68% freight efficiency improvement (freight-ton-miles per gallon) over a defined 24 hour duty cycle (above drive cycle + extended idle) representative of real world, line haul applications.
- Objective 3: Technology scoping and demonstration of a 55% BTE engine system. Engine tests, component technologies, and model/analysis will be developed to a sufficient level to validate 55% BTE.


Baseline Vehicle and Engine: 2009 Peterbilt 386 Tractor and Cummins 15L ISX Engine

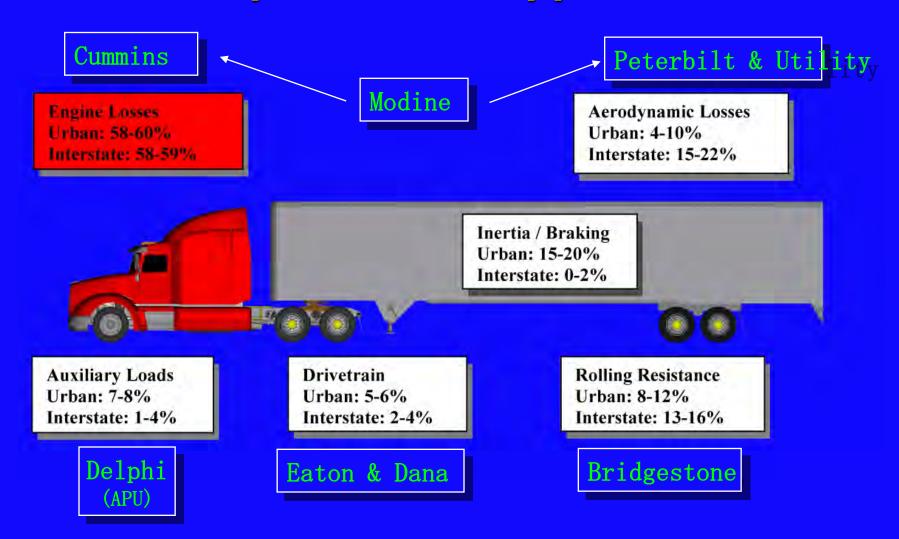
Overview - Schedule and Budget

Budget

DoE Share \$38.8M (48%)
Contractor Share \$42.1M (52%)

4 Year Program: April 2010 to April 2014

Relevance - American Recovery and Reinvestment Act (ARRA) Goals


Create and/or Retain Jobs

		Projections	
Year	2010	2011	2012
Full Time	75.5	107.5	131.0
Equivalent			

States: Indiana, Texas, Michigan, Wisconsin, Tennessee, Illinois, California

- Spur Economic Activity:
 - Greater than \$13M Total Spend to Date
- Invest in Long-Term Economic Growth
 - Commercial Viability Assessment
 - Demonstrate Technologies with Acceptable Payback Period
 - Adopt Technologies into Product Plans to Meet GHG and CO₂ Regulations for 2017 and beyond

Comprehensive Approach

Analysis of 27 Drive Cycles of Class 8 Vehicles Variety of Seasons (Summer, Winter, etc)

<u>Overview</u> - Program Barriers

- Underhood Cooling with Waste Heat Recovery
- Vehicle and Engine System Weight Reduction
- Engine Downspeed (Reduced Engine Speed)
 - Powertrain Components
 - Vibration/Customer Acceptance
- Trailer Aerodynamic Devices that Meet Operational Requirements
- Vehicle and Powertrain Communication Speed

Comprehensive <u>Approach</u> with Enabling Technology

<u>Approach</u> – Freight Efficiency Path to Target

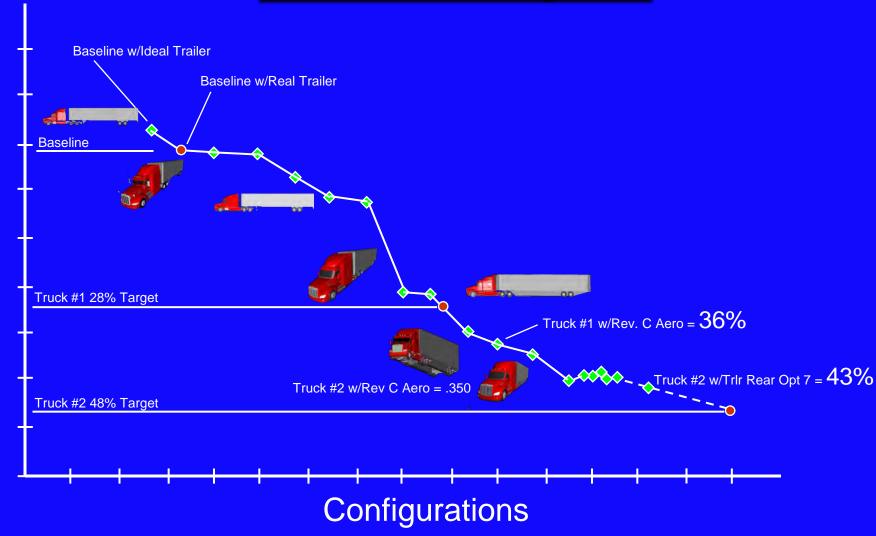
	Drive Cycle Vehicle Demonstration	24 Hour Duty Cycle Vehicle Demonstration
Technology	Freight Efficiency Improvement (%)	Freight Efficiency Improvement (%)
Vehicle Aerodynamics	14%	24%
Engine	25.5%	27%
Transmission/ Axles	3.5%	3.5%
Rolling Resistance	3.5%	3.5%
Route Performance Management	2.5%	2.5%
Idle Management	N/A	10%
Vehicle Weight	3%	3%
Total	52%	73.5%
Target	50%	68.5%

Peterbilt Participants

- Contract Lead Cummins
- Suppliers
 - Modine Cooling Module
 - Eaton Transmissions FATON
 - Dana Drivetrain

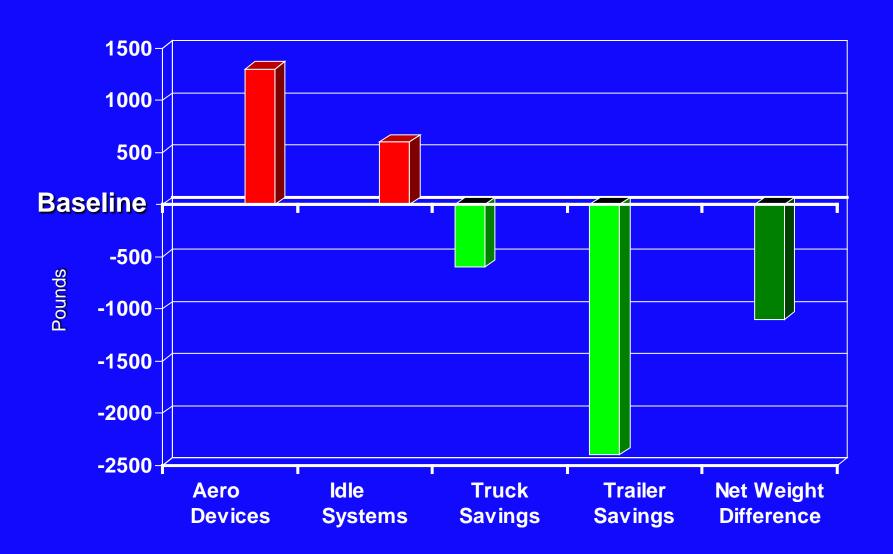
- Bridgestone Fuel Efficient Tires Aridestone
- Alcoa Wheels

- Delphi Solid Oxide Fuel Cell APU DELPHI
- Bergstrom eSHVAC Bergstrom
- Garmin 3D Map and Display GARMIN.
- Exa CFD Analysis
- OEM
 - Utility Trailer Manufacturing

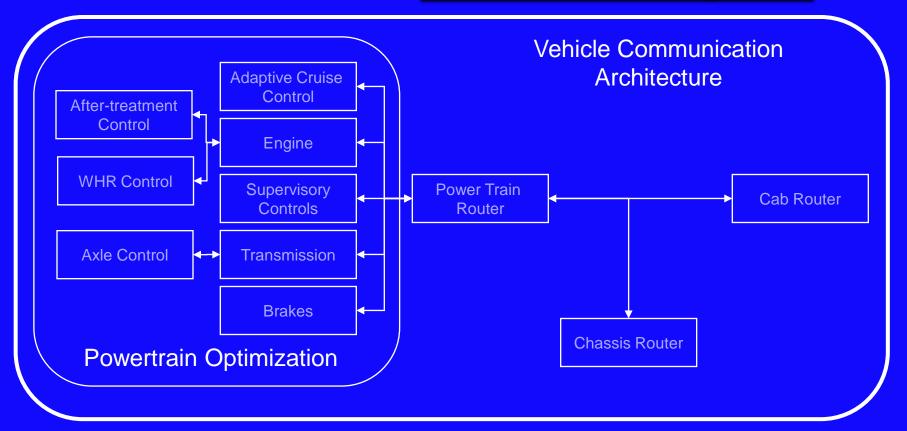

- End User
 - US Xpress ENTERPRISES, INC.

 Strategically Positioned To Deliver A Difference To Deliver A Differenc

End User Participation - Collaboration/Partnerships


- US Xpress will provide:
 - Feedback on the 24 hour duty cycle used for fuel efficiency testing
 - Comments on the practicality of the trailer configuration and aero devices
 - Comments on the business aspects of the technology being investigated
 - Driver feedback on the appearance, performance and drivability of the new technology in the development trucks

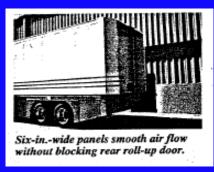
Aerodynamic Improvements – <u>Technical Progress</u>



^{*} Cd's Shown Are Adjusted to SAE J1252 Baseline Using % Average Deltas From 0 and 6 Degree CFD Runs

Truck/Trailer Weight - <u>Technical Progress</u>

Vehicle and Powertrain Communication Architecture – <u>Technical Progress</u>



- Establish Requirements For Future Vehicle Communication Architecture
- New Level Of Vehicle And Powertrain Optimization For Fuel Efficiency (Algorithms Completed And Simulation Completed: Hardware-in-the-loop Testing On-going)

Trailer Development - <u>Technical Progress</u>

- Trailer Build In Process
- Devices Support Industry
 - Swing Doors, Not Roll-Up
 - Not Obstruct Trailer Opening
 - End Customer Input

Milestones and Technical Accomplishments

- March 2010 to March 2011 Technical Accomplishments
 - Simulation of Path to Target for Engine and Vehicle Efficiencies
 - Baseline Vehicle Testing
 - CFD Analysis of Vehicle Demo. #1 Aero
 - Design of Advanced Transmission
 - Performance Assessment of SOFC APU
 - Integration of Cummins Waste Heat Recovery System

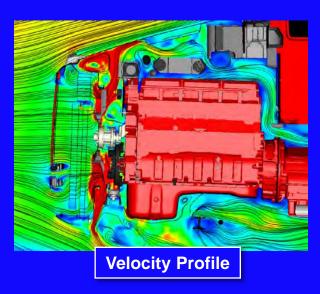
- Design Freeze for Vehicle Demonstration #1 (Objective 2a)
- Truck #1 and Trailer Build
- Testing of Tractor Trailer Aerodynamics Solution
- Vehicle Testing of Advanced Transmission
- Complete Design of Second Generation of SOFC APU

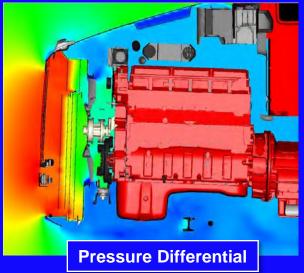
Summary

- Program Remains On Schedule With 100% Milestone Completion
- Meeting The Goals For American Recovery And Reinvestment Act (ARRA)
- Completed Baseline Vehicle Testing
- Completed CFD Analysis Of Tractor-trailer
 Aerodynamic Design For Vehicle #1 (Objective 2a)
- Engine Efficiency And Vehicle Freight Efficiency Roadmaps Updated With Evidence To Meet Or Exceed Targets
- Vehicle Packaging And Integration Proceeding Without Any Major Issues
- Completed Design Of Advanced Transmission Part Procurement On-going

Technical Back-Up Slides

Baseline Testing - Technical Progress


- Baseline Testing Complete
- Strong Simulation Tool Correlation
 - Within 4.6% of Actual
 - Weather Variables
 - Additional Testing to Increase Confidence



Vehicle and Engine Cooling System Design Underhood Air Flow and Temperature Analysis

Successful Packaging of the Engine + Waste Heat Recovery In the Aerodynamic Vehicle Design

