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DO NANOCARBON ENSEMBLES PROVIDE AN OPPORTUNITY FOR 
THE SYNTHESIS OF A NEW CLASS OF HIGH EFFICIENCY 

THERMOELECTRICS?
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The Coupling of ZT Parameters 
in bulk materials :

1)

 

Increasing the electrical 
conductivity tends to decrease 
the Seebeck Coefficient.

2)      Increasing the electrical 
conductivity tends to increase 
the thermal conductivity.

Nanoensemble Design Considerations Intended to Decouple the  ZT parameters: 

1)

 

Increased phonon scattering at grain boundaries reduces the thermal 
conductivity of nanomaterials.

2)

 

One component of the nanoensemble is chosen to have a high electrical 
conducttivity without increasing the thermal conductivity of the

 
nanoensemble.

3)     Another component optimizes the configurational electronic entropy and  
produces a high density of states within thermal energies of the

 

Fermi level 
without causing a decrease in electrical conductivity.



4

Efficiency vs. T
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=thermoele
 ctric efficiency

C

 

=Carnot 
efficiency

• Efficient conversion of heat to electricity requires large T’s and therefore high 
operating temperatures

• Carbon Nanoensembles are among the very few materials that, because of their high 
Debye temperatures, maintain their nanocrystallinity at high temperatures.
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State of the art performance of SiGe alloys in space 
thermoelectric applications

M.S. Dresselhaus et al. , Advanced Materials, 19, 1043 (2007)
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Apparatus for the synthesis of Nanocarbon Ensembles 
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Boron substitutional solid solutions in graphite

The system Boron-

 

Carbon

C.E. Lowell, J. Am. Ceramic Soc. 50, 142 (1967)
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Results
TEM micrographs of 

boron doped NCE

As-

 

fabricated

Annealed at 
1700K

Annealed at 
2100K
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XRD spectra of boron doped 
NCE

as fabricated and after 
annealing at 2500K

•
 

the thermal treatment reduces the amount of 
unorganized (disordered) carbon in the material 
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Results
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Seebeck coefficient (left) and Electrical conductivity (right) results for a 
boron doped sample as a function of temperature and annealing times.

•
 

Seebeck coeff. and electrical conductivity 
increase with the annealing temperature and time 
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AN INTERESTING INSIGHT TO THE PHYSICAL 
MEANING OF THE ABSOLUTE THERMOELECTRIC 
POWER CAN BE OBTAINED BY (CONSIDERING 
THAT) EACH ELECTRON INVOLVED IN THE 
ELECTRIC CURRENT CARRIES WITH IT AN 
ENTROPY. THE THERMOELECTRIC POWER CAN 
BE LOOKED ON AS THE ENTROPY TRANSPORTED 
PER COULOMB BY THE ELECTRON FLOW.

H.B Callen, “THERMODYNAMICS”, John Wiley and Sons, 1960.
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Structures of molecular analogs of graphene.
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Solid circles indicate where boron substitutions are  located.
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B3LYP/6-31G*  relative energies of boron 
disubstituted C30 graphene sheets. 
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B3LYP/6-31G* relative energies of molecular analogs of 
graphene and of different electronic states

Graphene sheet 
stochiometry

Structure

Relative 
energy, 

kcal/mol for 
different 
isomers 

Energy relative to singlet (kcal/mol)

Singlet Triplet Quintet

C22

 

H12 K1 (3x2) 5.9 0.0 32.1 103.3

K2 0.0 0.0 47.3 120.7

NK 26.7 0.0 -23.4 62.7

C30

 

H14 K1 0.0 0.0 44.3 109.0

K2 8.6 0.0 26.0 102.5

K3 (3x3) 13.7 0.0 20.6 73.9

NK 25.7 0.0 -19.4 47.5

C46

 

H18 K (5x3) 0.0 0.0 3.0 31.8

NK 17.1 0.0 -28.9 -38.2

C70

 

H22 K (5x5) === 0.0 -7.1 0.4

C96

 

H26 K (6x6) === 0.0 -12.8 -17.9
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B3LYP/6-31G* relative energies of different electronic states of 
boron-substituted molecular analogs of graphene. 

Graphene sheet 
stochiometry

Structure
Energy relative to singlet (kcal/mol)

Singlet Triplet Quintet

C20

 

B2

 

H12 K1 (3x2) 0.0 37.4 107.7

NK 0.0 49.8

C28

 

B214 K3 (3x3) 0.0 16.5 77.3

NK 0.0 39.1 91.7

C44

 

B2

 

H18 K (5x3) 0.0 33.9 84.3

NK 0.0 -17.4 19.8

C42

 

B4

 

H18 NK 0.0 35.8 84.7

C70

 

H22 K (5x5) 0.0 3.0 41.2

C96

 

H26 K (6x6) 0.0 -13.5 2.1



15

For C22 and C30 the results are for 2 borons and for C46 it is for 4  borons.
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Results/Theory

Structure of 4-layer nanographite 
particles with and without boron 

substitutions 
(filled black circles). 

Results from DFTB calculations.

Energy levels for pristine and 
boron substituted nanographite 

particles with four layers of 
graphene sheets. 
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Results & Progress

•
 

Modified NCE has 
the same PF after 
1700K anneal as the 
NCE after 2500K. 

•
 

We expect that the 
PF of the modified 
NCE will be strongly 
enhanced after 
2500K anneal.
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Summary

Bulk boron doped nanocarbon
 

ensembles based on 
the concept of strongly enhanced electronic

 
 

configurational
 

entropy have been shown to exhibit 
promising TE properties.

During the last year, power factors have been 
increased 20 to 40 fold over previous results

 
 

primarily by high temperature annealing 
procedures which increases both the Seebeck

 coefficient and the electrical conductivity.
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Summary (2)

The thermal conductivity of the nanoensembles
 

is 
in the 10-2

 
W/cmK

 
range.

Future work is primarily aimed at increasing the 
Seebeck

 
coefficient by the exploitation of 

compositional changes augmented by new 
annealing/quench techniques.
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