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BNL Thermoelectric (TE) Materials Program OverviewBNL Thermoelectric (TE) Materials Program OverviewBNL Thermoelectric (TE) Materials Program Overview
Our research focuses:
1) Exploring new avenues to TE materials research: e.g. oxides

Searching for resonant structure in e-DOS near Fermi-level: Cobaltates
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BNL Thermoelectric (TE) Materials Program OverviewBNL Thermoelectric (TE) Materials Program OverviewBNL Thermoelectric (TE) Materials Program Overview

2) Developing cost-effective and industrially-scalable TE Materials 
and technology for power generation and refrigeration 

–  Bulk high performance TE materials
(2006 –  present, DOE-WHR, BNL/GM CRADA, BNL-TM-Fund)
Non-equilibrium (Melt-spin + Hot press or SPS*) 

+

-  TE Modules

*WUT, SIC (China), Fraunhofer (Germany), and others 



Bulk Thermoelectric MaterialsBulk Thermoelectric Materials

Terry M. Tritt & Mas Subramanian
MRS Bulletin TE Theme, March 2006

Objectives:Objectives:
ZT ~ 1.0 -  1.5 by 

increasing power factor 
and reducing lattice 
thermal conductivity 
simultaneously
Good thermal and 

mechanical Properties
Cost effective and Cost effective and 

industrial scalableindustrial scalable
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BNLBNL’’s Interests in Bulk High Performance TE Materialss Interests in Bulk High Performance TE Materials

Terry M. Tritt & Mas Subramanian
MRS Bulletin TE Theme, March 2006 Materials of interests:Materials of interests:

Region I (250K –  500K)
Tellurides

Region II (500K –  800K)
Filled skutterudites
Magnesium silicides

Region III (800K –  1050K)
Oxides -  cobaltates

II IIII IIIIII



CoSbCoSb
 33

Conventional solid state synthesis of filled SkutteruditesConventional solid state synthesis of filled Skutterudites

Conventional solid state Conventional solid state 
synthesis techniques:synthesis techniques:

Melting the stoichiometric compositions

Quench into ingots

Powdering (e.g. ball milling) and sintering to 
single phase compounds (days or weeks)

Densification under high pressure 



NonNon--equilibrium Synthesisequilibrium Synthesis

Conventional solid state Conventional solid state 
synthesis techniques:synthesis techniques:

Melting the stoichiometric compositions

BNLBNL’’s nons non--equilibrium equilibrium 
synthesis techniques*synthesis techniques*

Quench into ingots

Rapid solidification (Fig. 1) starting materials
into near amorphous ribbons in ~ seconds

Direct conversion and densification 
under high pressure (Fig. 2)  in minutes 

Powdering (e.g. ball milling) and sintering to 
single phase compounds (days or weeks)

Densification under high pressure 

Fig. 2 SPS (GM, not shown) and Hot PressFig. 2 SPS (GM, not shown) and Hot Press
 Max. rate 3000C/s, Max. P = 4000 Kbar, Max. T = 25000C at BNL and SBU

Fig. 1Fig. 1



XX--ray Diffraction and TEM of Meltray Diffraction and TEM of Melt--Spun CeFeSpun CeFe44  
SbSb1212
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MS+SPS processed pMS+SPS processed p--type filled skutterudites type filled skutterudites --
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Structures of MeltStructures of Melt--Spun+HP Samples Spun+HP Samples (2 min conversion)(2 min conversion)



Structures of MeltStructures of Melt--Spun+HP Samples Spun+HP Samples (2 min conversion)(2 min conversion)

  Very dense (~100%) 
  Variable grain sizes 

~ 50nm –1m

Pressure 
direction

Ribbon 
length 
direction



Thermoelectric Properties Characterization*Thermoelectric Properties Characterization*
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*High temperature thermoelectric properties measured by C. Uher’s group



Power Factor and Figure of Merit ZTPower Factor and Figure of Merit ZT
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Low Lattice Thermal Conductivity!Low Lattice Thermal Conductivity!

LL
 

obtained by using Wiedmannobtained by using Wiedmann--Franz lawFranz law
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Inelastic neutron scattering of CeInelastic neutron scattering of Ce--filled skutteruditesfilled skutterudites
*I. Domitrov, S. Shapiro, Q. Li, and 
M. Manley (LLNL) ORNL-SNS

Melt spin + SPS 

Eq. annealed



150

175

200

225

250

275

300

250 300 350 400

T (K)

S
 ( 

V/
K

)

MS+HP
BM+HP

0

0.2

0.4

0.6

0.8

1

1.2

1.4

250 300 350 400

T (K)

 
(1

05  S
/m

)

MS+HP
BM+HP

0.6

0.8

1

1.2

1.4

1.6

250 300 350 400

T (K)

 
(W

/m
/K

)

MS+HP
BM+HP

0.6

0.8

1

1.2

1.4

1.6

250 300 350 400

T (K)

ZT

MS+HP
BM+HP

TE Properties of MS+HP processed BiTE Properties of MS+HP processed Bi0.520.52
 

SbSb1.481.48
 

TeTe33
 

**

*Measured along the same direction: I//T



Higher filling fraction, higher density, and higher mechanical strength
More control of micro-  to nano-structures to increase the power factor, 

while simultaneously reducing the lattice thermal conductivity 
Reduced processing time by orders of magnitude and industrially 

scalable
Applicable to a wide range of TE and other energy-related materials

(High ZT values in several PG and RG thermoelectric materials)

Conventional solid state Conventional solid state 
synthesis techniques:synthesis techniques:

Melting the stoichiometric compositions

BNL’s nonBNL’s non--equilibrium equilibrium 
synthesis techniques*synthesis techniques*

Quench into ingots

Rapid solidification (Fig. 1) starting materials
into near amorphous ribbons in ~ seconds

Direct conversion and densification 
under high pressure (Fig. 2)  in minutes 

Powdering (e.g. ball milling) and sintering to 
single phase compounds (days or weeks)

Densification under high pressure 

Advantages of nonAdvantages of non--equilibrium processequilibrium process



Non-equilibrium synthesis can increase power factor by enhancing 
electrical conductivity, and reduce lattice thermal conductivity  
simultaneously in several filled skutterudites  and telluride based 
compounds and alloys.

The cost-effective, industrial scalable non-equilibrium processed 
materials appear to have better and reproducible  thermoelectric and 
mechanical properties that are ready  for practical applications.

ConclusionsConclusions

This work supported in part by DOE-BES, DOE-EERE (WHR), 
GM (GM/BNL-CRADA), and AUI (BNL)-Tech Maturation Fund
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