Development of Low and high Temperature Thermoelectric Generators for Automotive Waste Heat Recovery System

Soonseo Park, Jungho Yoo, Sungkyu Cho, Moongyu Jang#, and <u>Shiho Kim</u>

Head Director, RAVERS Department of Electrical Engineering Chungbuk National University, Korea # : Convergence and Components & Materials Research Lab, ETRI, Korea

2009 Thermoelectrics Applications Workshop Hotel Del Coronado, San Diego, CA September 29 – October 1, 2009

- Introduction to RAVERS
- Goal and Objectives of R & D
- Technical Approaches
- Experiment and Fabrication results
- Summary and Further works

- Research Center for Advanced Hybrid Electric Vehicle Energy Recovery System(RAVERS) at CBNU
- Supported by Korean government (Ministry of Knowledge Economy, MKE) and Chungbuk Provincial government
- RAVERS collaborates with Major Korean motor companies and Battery and Ultra Cap makers for development of TE-HEV and Battery management system of HEVs.

Goal and Objectives of R & D

- Developing a Low and high Temperature Dual Thermoelectric Generation Waste Heat Recovery System for Light-Duty Vehicles
 - More than 10% Fuel Efficiency Improvement for the light-duty vehicles with Gasoline or LPG engines
 - Target vehicle is a compact passenger car with engine size from 1500 to 2000 cc
 - Developing superlattice TEM for high temp and low cost material as well as an environmentally nonhazardous substance
 - Design Optimization & Performance Analyses for Integrated TE System
 - System-Level Analysis and Testing of Advanced TE Materials

Achievement Plan

- Phase I (2009 -2010)
 - Developing 1KW TEG for a light-duty vehicle by the end of FY2010
 - Replacing an Alternator of conventional ICE vehicles
- Phase II (2011 2012)
 - Developing 5KW TEG for a light-duty vehicle by the end of FY2012
 - TE module will be adapted to regenerative breaking HEVs
- Phase III (2013 -2014)
 - Development of TE-HEV for Plug-in HEVs
 - Due to the TE power generation, the engine size can be reduced

Technical Approaches: Phase I

- Dual Thermoelectric Generation Waste Heat Recovery System
 - Low temperature generator using Radiators : ~100W
 - High temperature generator using exhaust gas : ~1KW

2009 Thermoelectrics Applications Workshop

Technical Approaches: TEG-Radiator

Conceptual diagram of Radiator With Thermoelectric Generator (1)

Technical Approaches : TEG-R cont'd

Technical Approaches:**TEG-EG**

• TEG using Exhaust Gas [1]

Technical Approaches : TEG-EG cont'd

- TEG using Exhaust Gas [1]:
 - modeling for simulation

Technical Approaches : TEG-EG cont'd

• TEG using Exhaust Gas [1] : simulation results

(a) Using long heat pipes, (b) using short heat pipes

Experiment using cooler with heat pipes

Thermoelectric Generator with loop thermosiphons and heat spreader for air cooling system

Experiment using cooler with heat pipes (2) RAVERS

- Experimental Results
 - 4cm x 4cm Bi2Te3 Thermoelectric Device
 - Ambient temperature of Lab is about 30°C

Temp (Hot side)	Power max	V open/I short	Remark
100°C	0.64 Watt	2.2V / 1.2A	Without cooling Fan
100°C	1.44 Watt	3.3V / 1.75A	With cooling Fan
150°C	3.65 Watt	5.2V / 2.8A	With cooling Fan
200°C	5.68 Watt	6.7V / 3.39A	With cooling Fan

Fabrication of TEG-Radiator

Radiator With Thermoelectric Generator under fabrication

Fabrication of TEG-Exhaust Gas

• Fabricated TEG using Exhaust Gas [1]:

Experimental setup for TEG-EG Supplying Exhaust Gas using a Gas Burner

Fabrication of Automobile simulator

• Automobile simulator under manufacturing

Half car having an Engine and front wheel drive train with Electric break system with load control

Summary and Further Works

- We have developed a Low and high Temperature Dual Thermoelectric Generation Waste Heat Recovery System
 - For compact size passenger Vehicles
 - Primary high Temperature heat exchanger designed to recover waste heat from the exhaust gas
 - Secondary low temperature Thermoelectric Generator using coolant of a Radiator.
- Manufacturing first Prototype of heat exchanger using Thermosypons will be finished at the end of this year
- Development of superlattice for high temp and low cost TE material as well as environmentally nonhazardous material for Phase II

Thank you for your attention

ACKNOWLEDGMENT

This work was supported by the MKE under the ITRC support program supervised by the NIPA (C1090-0904-0007).