Lattice Thermal Conductivity and Stability of “TE Nano-Composites”

Prof. Terry M. Tritt

e-mail: ttritt@clemson.edu
http://www.clemson.edu/caml/

Dept. of Physics & Astronomy
Clemson University, Clemson, SC
Motivation for Low Dimensional TE Materials:

- Quantum Enhancement
 - Increase Seebeck
 - Interface Scattering
 - Large Kapitza Resistance
 - Reduce κ_L

Hicks & Dresselhaus, PRB 1993
Dresselhaus, Plenary Talk - ICT 05, Adv. Mats 07
Relative Importance of α^2/ρ and κ

<table>
<thead>
<tr>
<th>Material</th>
<th>Nano</th>
<th>Bulk</th>
</tr>
</thead>
<tbody>
<tr>
<td>α^2/ρ (μW/cm\cdotK2)</td>
<td>40</td>
<td>51</td>
</tr>
<tr>
<td>κ (W-m^{-1}K$^{-1}$)</td>
<td>0.6</td>
<td>1.45</td>
</tr>
<tr>
<td>ZT ($T=300K$)</td>
<td>2.4</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Venkatasubramanian et al., Nature 413, 597, 2001

<table>
<thead>
<tr>
<th>Material</th>
<th>Nano</th>
<th>Bulk</th>
</tr>
</thead>
<tbody>
<tr>
<td>α^2/ρ (μW/cm\cdotK2)</td>
<td>32</td>
<td>28</td>
</tr>
<tr>
<td>κ (W-m^{-1}K$^{-1}$)</td>
<td>0.6</td>
<td>2.5</td>
</tr>
<tr>
<td>ZT ($T=300K$)</td>
<td>1.6</td>
<td>0.3</td>
</tr>
</tbody>
</table>

Relative Importance of α^2/ρ and κ

Bi$_2$Te$_3$/Sb$_2$Te$_3$ Superlattice

<table>
<thead>
<tr>
<th></th>
<th>Nano</th>
<th>Bulk</th>
</tr>
</thead>
<tbody>
<tr>
<td>α^2/ρ (μW/cm-K2)</td>
<td>40</td>
<td>51</td>
</tr>
<tr>
<td>κ (W-m$^{-1}$K$^{-1}$)</td>
<td>0.6</td>
<td>1.45</td>
</tr>
<tr>
<td>ZT ($T = 300K$)</td>
<td>2.4</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Venkatasubramanian et al., Nature 413, 597, 2001

PbTe/PbSeTe Quantum Dots

<table>
<thead>
<tr>
<th></th>
<th>Nano</th>
<th>Bulk</th>
</tr>
</thead>
<tbody>
<tr>
<td>α^2/ρ (μW/cm-K2)</td>
<td>32</td>
<td>28</td>
</tr>
<tr>
<td>κ (W-m$^{-1}$K$^{-1}$)</td>
<td>0.6</td>
<td>2.5</td>
</tr>
<tr>
<td>ZT ($T = 300K$)</td>
<td>1.6</td>
<td>0.3</td>
</tr>
</tbody>
</table>

PbSe$_x$Te$_{1-x}$ quantum dots in PbTe layers
TE Enhancement of Roughened Si Nanowires

Jan 2008 -- LBNL & Berkeley Groups

Surface Roughness Above
Leads to Reduction in Thermal Conductivity (Left)
Embedding Nanoparticles in Crystalline Semiconductors

ErAs nanoparticles in In$_{0.53}$Ga$_{0.47}$As matrix
Epitaxial growth
Goal to “Beat the Alloy Limit”
Uncorrelated Phonon Scattering

- Reduction in κ_L (“nano-phonon effect”)
 Depends on ML thickness (ErAs nano)*
- Power Factor about same
 but ErAs can act as a dopant
- ZT significantly enhanced
- Theoretical analysis showed that
 - ErAs nanoparticles scatter mid to long λ phonons*
 - While atomic scale defects scatter short λ phonons.

W. Kim et al., PRL, 96-045901 (2006)
Santa Cruz & Berkeley Groups

\[\text{normalized} \]

κ_L reduced a factor of 2 below the alloy limit!
ZT enhanced a factor of 2!
TE Nanomaterials Growth, TE Nanocomposites & Grain Boundary Engineering

But First, Discussion on TE Measurements!
Resistivity and Seebeck Measurement Description:

\[V_{Total} = V_{IR} + V_{TE} \]

\[V_{IR} = \frac{[V(I^+) + V_{TE}^*] - [V(I^-) + V_{TE}^*]}{2} \]

\[\alpha_{AB} = \frac{\Delta V}{\Delta T} = \frac{(V_H - V_L)}{(T_H - T_L)} \]

Important to measure \(\Delta T \) Correctly where \(\Delta V_{TE} \) is measured.

Measure all Properties on Same Sample!
Crycooler Head for R & α Measurements System (3 Systems):

Typical Size: 2 x 2 x 8 mm³
6-10K < T < 320 K

Measures two samples simultaneously
6 K < T < 320 K

IC Chip receptacle

Thermal Conductivity - Bulk Samples

- Phosphor Bronze wire
- Strain Gauge
- #38 Cu wire with stycast
- Stable T base

Low Temp Thermal Conductivity:

Steady State Method

(6K to 320 K)

P vs. ΔT Sweeps @ Constant T

\[
P_{\text{Sam}} = \kappa_{\text{Tot}} \frac{A}{L_s} \Delta T
\]

- PSam = $\kappa_{\text{Tot}} \frac{A}{L_s} \Delta T$

- Sample Width $\approx 3\text{mm}$

Equation:

\[
\kappa = \frac{P_s L}{A \Delta T}; P_s = I^2 R - P_{\text{loss}}
\]

Pope et.al Cryogenics, 41, 725 (2001)
Thermal Conductivity - Bulk Samples

Absolute steady state technique
Two samples may be mounted simultaneous
Dismountable puck
The puck socket attached on a Cryocooler
Three Separate Systems
Thermal conductivity measured from 6 K to 300 K

A. L. Pope, B. M. Zawilski and Terry M. Tritt
Cryogenics, 41, 725 (2001)
High Temp Thermal Conductivity:

High Temperature DSC
Measure C_p To 1500°C
Thermal Stability & Heat Capacity

NETZSCH LFA 457
Thermal Diffusivity (d)
Or Conductivity (κ)
Temp Range: RT to 1100°C

$$\kappa = d \rho_D C_V$$
\[\kappa = d \rho_D C_V \]

\(\kappa \) = thermal conductivity
\(d \) = thermal diffusivity
\(\rho_D \) = density
\(C_V \) = Heat Capacity
Temperature increase for various experimental conditions

\[d = 0.1388 \left(\frac{L^2}{t_{1/2}} \right) \]

\(t_{1/2} = \) Rise half time
\(d = \) thermal diffusivity
\(L = \) sample thickness

assumes ideal conditions of adiabatic sample and instantaneous pulse heating

\[\kappa = d \rho D C_V \]

High Temp DSC in conjunction with Laser Flash --- Shows Thermal Stability of Half Heusler Alloys to 900°C

UVA & Clemson Results

Total Thermal Conductivity (Wm⁻¹K⁻¹)

Temperature (K)

Sample: CG-5-111
(Hf₀.₇₅Zr₀.₂₅NiSn₀.₉₇₅Sb₀.₀₂₅)
Instrument: DSC 404 C
Sample Mass: 280.05 mg
Crucible: Pt+Al₂O₃-liner
Atmosphere: Argon

Derived Thermal Conductivity Half Heusler Alloys to 900°C
Ti$_{1-x-y}$Zr$_x$Hf$_y$Ni Sn$_{0.975}$Sb$_{0.025}$

Good Agreement From the Two Systems

Very Different Techniques

Two Carrier Heat Conduction
Acquisition of Commercial High Temperature R & α System

Commercial High Temperature R & α System

25°C to 800°C

Automated

Enhanced Through put

Less Down Time
ULVAC (ZEM-2)
Commercial high temp. R & S system

- Temp. range: -30 to 800°C
- Sample size: 2mm x 2mm x 7mm min.
- Both rod & bar samples can be mounted
- R & S data collected simultaneously
- Completely automated system
- Design allows rapid data collection

See also: V. Ponnalbalam et. al., Rev. Sci Instrum., 2006
R & S data of $\text{TiNiSn}_{0.99}\text{Sb}_{0.01}$ nano-composites

Data collected using both low temp. setup and ULVAC (ZEM-2) high temp. system
Data matched well at RT
Elementary Error Propagation

\[Q = Q(a, b, c) \]

\[
\delta Q = \frac{\partial Q}{\partial a} \delta a + \frac{\partial Q}{\partial b} \delta b + \frac{\partial Q}{\partial c} \delta c
\]

\[
\frac{\delta Q}{Q} = \frac{\delta a}{a} + \frac{\delta b}{b} + \frac{\delta c}{c}
\]

\[
ZT = \frac{\alpha^2 \sigma_T}{\kappa} = \frac{\alpha^2 \sigma_T}{\kappa_E + \kappa_L} = \frac{\alpha^2 T}{\rho \kappa}
\]

\[
\frac{\delta ZT}{ZT} = 2 \frac{\delta \alpha}{\alpha} + \frac{\delta T}{T} + \frac{\delta \rho}{\rho} + \frac{\delta \kappa}{\kappa}
\]

\[
\kappa = K \frac{L_{TC}}{A}
\]

\[
\rho = R \frac{A}{L_v}
\]

\[
\frac{\delta \rho}{\rho} = \frac{\delta R}{R} + \frac{\delta w}{w} + \frac{\delta t}{t} + \frac{\delta L_v}{L_v}
\]
High Temp Measurements
\(d - (\kappa) \) by Laser Flash & DSC (\(C_p \))

\[\kappa = d \rho_D C_V \]

\[ZT = \frac{\alpha^2 \sigma T}{\kappa} = \frac{\alpha^2 \sigma T}{\kappa_E + \kappa_L} = \frac{\alpha^2 T}{\rho \kappa} \]

Measure all on One Sample

Low Temp Measurements
\(K - (\kappa) \) by Steady State

\[P = K \Delta T = I^2 R - P_{Loss} \]

\[\kappa = K \frac{L_{TC}}{A} \]

\[\rho = R \frac{A}{L_V} \]
High Temp Measurements
\(d - (\kappa) \) by Laser Flash & DSC \((C_p)\)

\[\kappa = d \rho_D C_v \]

Low Temp Measurements
\(K - (\kappa) \) by Steady State

\[P = K \Delta T = I^2 R - P_{Loss} \]

\[ZT = \frac{\alpha^2 \sigma T}{\kappa} = \frac{\alpha^2 \sigma T}{\kappa_E + \kappa_L} = \frac{\alpha^2 T}{\rho \kappa} \]

\[ZT = \frac{\alpha^2 T}{\rho \kappa} = \frac{\alpha^2 T}{R \left(\frac{A}{L_v} \right) K \left(\frac{L_{TC}}{A} \right)} \]

\[\kappa = K \frac{L_{TC}}{A} \]

\[\rho = R \frac{A}{L_v} \]

At best \(\approx 5-7\% \) uncertainly on ZT!

Same Sample -- A cancels
TE Nanomaterials Growth,
TE Nanocomposites &
Grain Boundary Engineering

Summary Slide Highlights

Expanded Version at End
Various TE Materials Research @ Clemson:

Skutterudites:
Double-filled In$_x$Yb$_y$Co$_4$Sb$_{12}$ Skutterudites; J. Peng et.al.
Jour. of Appl. Phys., **105**, 084907 (2009);

La$_{0.9}$CoFe$_3$Sb$_{12}$-CoSb$_3$ Skutterudite Nanocomposites, P. Alboni, et.al.

Half Heusler Alloys:
(Zr,Hf)Co(Sb,Sn) half-Heusler phases as p-type thermoelectric materials

Boundary scattering on the thermal conductivity of TiNiSn-based HH alloys,

Oxide TE Mats:
In-plane thermal conductivity of Na$_x$Co$_2$O$_4$ single crystals
Nanocomposites fabricated by Hydrothermal/solvothermal nano-planting/coating

- Nanoparticles are easy to form aggregates.
- In TE nanocomposites, inhomogeneity may debase the TE performance.

Mechanical mixing

Solvothermal nano-coating

Nanoparticle-clusters

Better homogenous distribution of Nanostructures

Relatively-homogeneous nanocomposite

Hot press
An alkali metal hydrothermal treatment technique

Bulk TE raw powder

Various alkali metal (Na, K) compounds solution

Hydrothermally treat

Remove powder, wash & dry

150°C for 36 hr

alkali metal hydrothermal treatment process, an admixture of 6 mmol NaOH (KOH), 2 mmol NaF (KF), 3 mmol NaBH₄ (KBH₄), 35 ml distilled water, and ~ 2.5 g Pb₀.₇₅Sn₀.₂₅Te bulk reference powder were loaded into a 45 ml Teflon-lined autoclave

Hot press

pellet

CLEMSON UNIVERSITY
Hydrothermal Treatment of Pb$_{0.75}$Sn$_{0.25}$Te

Hydrothermal Treat with NaOH

Observe 20-50 nm Clusters On Surface of Pb$_{0.75}$Sn$_{0.25}$Te Hot Pressed to T > 400°C (Te rich interface)
Hydrothermal Treatment of Pb$_{0.75}$Sn$_{0.25}$Te

Figure 5 (online colour at: www.pss-a.com) Resulting enhancement of thermoelectric figure of merit at 420 K. Thermal conductivity, power factor, and thermoelectric figures of merit Z and ZT of Na solution hydrothermally treated Pb$_{0.75}$Sn$_{0.25}$Te are normalized by the corresponding values of the bulk reference Pb$_{0.75}$Sn$_{0.25}$Te. The dash-dotted line shows where the bulk reference is. It is clear that the increases of Z and ZT are due to

Normalized Properties

Dashed Line -- Bulk reference

Enhancements in ZT Due to Reduction in κ_L!
Novel Nanostructures and High ZT in Melt Spun p-type Bi$_{0.52}$Sb$_{1.48}$Te$_3$

Collaboration with Prof. X. Tang and student Wenjie Xie
Wuhan Univ. of Tech:
W.Xie et.al, Applied Phys Letters, 94, 102111-09
Also Jour. Appl. Phys., 2009

Supported by China Scholarship Program,
973 Programs and China NSF
US Dept. of Energy EPSCoR
Novel Nanostructures in Melt Spun p-type $\text{Bi}_{0.52}\text{Sb}_{1.48}\text{Te}_3$

Collaboration w. Prof. X. Tang and student Wenjie Xie
Wuhan Univ. of Tech:
Novel Nanostructures in Melt Spun p-type $\text{Bi}_{0.52}\text{Sb}_{1.48}\text{Te}_3$

Spark Plasma Sintering Conditions

300-400 °C
For several minutes
Force \approx 3-5 KN

Collaboration w. Prof. X. Tang and student Wenjie Xie
Wuhan Univ. of Tech:
Novel Nanostructures in Melt Spun p-type Bi\textsubscript{0.52}Sb\textsubscript{1.48}Te\textsubscript{3}

Contact Surface

Free Surface

Amorphous Microstructure near Contact surface

5-15 nm Nanocrystalline Regions or grains near CS

Large dendritic regions near free surface

Collaboration w. Prof. X. Tang and student Wenjie Xie
Wuhan Univ. of Tech:
Spark Plasma Sintering System: 1500 Amps

Sample In Mold
TE Properties of Melt Spun p-type Bi$_{0.52}$Sb$_{1.48}$Te$_3$

But the MS-SPS Sample Exhibited lower κ_L and thus Higher ZT (≈ 1.5) Than other samples

Collaboration w. Prof. X. Tang and student Wenjie Xie
Wuhan Univ. of Tech:
Low Temperature (T < 300K) Properties of MS-SPS -- Bi$_2$Te$_3$

Low Temperature (κ) by Steady State Technique
(see Cryogenics- Pope et.al 2000)
High Temp. Using (κ) Laser Flash and DSC
Concluding Remarks

- Increased Demands for Alternative Energy Systems
- Significant Progress in TE’s in Last 10 Years
- Thermoelectrics: (Shift to Waste Heat Recovery)
 Efficiency & Stability is a Materials Issue.
- Thermoelectric Materials Research:
 “Designer Materials” Approach
 Complex Structures & Transport Properties
 Challenges in Theory, Synthesis & Characterization
- Low Dimensional TE Materials - - High ZT
 Due primarily to reductions in lattice thermal conductivity
- Many Opportunities in Nanocomposites, “Grain Surface Engineering” or Nanoscaled Bulk TE Materials
 or Nanocomposites (Future-Spark Plasma Sintering)
- More Theoretical Modeling & Insight Needed

ZT ≈ 1.4
Acknowledgements:

Dept. of Energy: DOE EPSCoR Implementation Grant (DOE #: DE: FG02-04ER-46139)

SC EPSCoR & Clemson University

DARPA & ONR for Previous Support

Jeff Sharp, Marlow Inds.

Air Force Research Laboratory, Materials and Manufacturing Directorate (AFRL/RXLMD)