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Automotive Thermoelectric Applications



 

Current Automotive Applications


 

Car Seats


 

Cup Holders


 

Future Automotive Applications


 

Waste heat recovery


 

Zonal Air Conditioning/Heating



 

What are the implications of these new applications 
on TE Manufacturers?



 

What factors drive the material selection and design?


 

How do we assess reliability? 


 

Readiness Assessment
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Traditional TE Cooling vs. Zonal AC/Heating

Heat Pumped: mW’s to 10’s W
Mostly Single TEC Systems

Heat Pumped: low KW’s
Many, Many TECs per system 

http://us.st11.yimg.com/us.st.yimg.com/I/koolatrononline_1964_1044399
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Traditional TE Power Gen vs. Auto Waste Heat Recovery

Power Produced: (<10W)
Single TEG per System
Co-Generation  Not driven by 
TEG Efficiency

Power Produced: 100’s W to KW
Many, Many TEGs per system 
Waste Heat Recovery  Efficiency matters

http://shop.sportsmansguide.com/zoom/zoompop.asp?i=109601%5Fts%2EJPG&h=320&w=320&bgc=FFFFFF&ui=3&mz=2&cf=2&nv=3&c=&mode=zoom&adid=299648
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High Volume Automotive TE Applications 



 

Both Zonal AC and Waste heat recovery TE auto applications 
will  require a significant number of TE modules in each 
vehicle



 

Using traditional size and capacity TE devices, it would take:


 

~100 TECs to produce 2kW cooling system


 

~50 TEGs to generate 500W for a waste heat recovery system


 

Estimated world wide production of TE Devices in 2008: 
~25M



 

Each year about 50M vehicles are produced



 

Entire current production would address only 0.3% of those 
vehicles



 

Given the price volatility, scarcity of Tellurium, clearly for 
thermoelectrics to have any impact in the automotive 
industry, 

we can’t just build more TE modules.
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Scalability of TE Devices

For the same element area (A), 
cutting element L in half, doubles 

Imax (and Qmax)
L  Amps        L/2  2Amps

= = Elements with the same L/A ratio 
are thermoelectrically identical

L/A      =    L/A    =   L/A 

Nine commercially available 40 mm square TECs 
Total Qmax

 

~ 650 W
Single 40 mm TEC 

Qmax > 650 W
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Why don’t we do more scaling today?



 

Many applications today are single TEC applications 
make it harder to implement smaller devices


 

Voltage constraints 


 

Mechanical and thermal constraints 


 

Crystalline Bi2
 

Te3

 

material formats support only 
limited scaling



 

Fine grain Bi2
 

Te3

 

material formats can be scaled but 
are not as rugged as crystalline and more costly



 

Reducing the size of the TEC lowers efficiency


 

Smaller size Higher heat flux  higher thermal interface 
losses, ceramic conduction losses, larger spreading losses
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Ingot to Element - TE Material Usage
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Impact of Scaling and Fewer couples/Device



 

For waste heat recovery, target: $0.10/W

 

for raw TE 
material (1)



 

Device costs are driven by the cost of the TE materials


 

Will have to do everything we can to minimize TE material 

Constant power output ignoring scaling losses

(1)Buschmann, G, IAV GmbH, ICT 2009, Freiburg, Germany

Typical Industry 
Average
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How Far Can We Scale Down The TE Devices?



 

Auto Applications are driven by low watt density air


 

Zonal AC 


 

Cooling volumes of air in the cabin


 

Heat has to be dissipated eventually to air



 

Waste heat recovery 


 

extracting heat from high temperature air stream 


 

dumping that heat to ambient
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TE Device Design –
 

Dictated by Heat Sinking
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

 

Heat sink technology 
dictates TE device heat 
flux



 

Must have flexibility on 
TE element thickness to 
match TE heat flux with 
heat sink capability



 

Must be able to 
minimize all losses 
including electrical 
contact resistance, 
interconnect losses, etc. 
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Automotive TE Module Designs



 

TE module cost will dominate


 

Designs will be driven to highest heat flux 
(shortest elements) that the chosen heat sink 
technology can support w/o significant spreading 
and thermal losses



 

Need capability to vary material thickness from 
0.30 –

 

1.2 mm to be able to optimize system 
(performance vs. cost) –

 

raw material formats 
that can support these thicknesses



 

TE devices will have few couples


 

Low voltage output + Many devices = Few 
couples needed per device and still be able to 
provide some redundancy w/ series parallel 
wiring configurations



 

Minimizing TE material losses


 

Cooling devices:  single stage


 

Power generation: both single stage and either 
segmented or cascade needed.

Marlow 1st

 

Generation PbTe 
Prototype Devices
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Power Generation TE Material Selection



 

Selection will not be based solely on ZT


 

Raw material cost and cost to process it into elements


 

Can it be scaled to thicknesses that can optimally match the 
available heat exchange technology?
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Te3

 

Fine Grain

Bi2

 

Te3

 

Thin Film

PbTe

Skutterudites

Mg Silicides

Zn4

 

Sb3

Half Heuslers

$150-170/kg

?
?

? $10-25/kg
?
?

$80-100/kg

$5-10/kg
$50-60/kg

$10-30/kg
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TE Assembly



 

Existing TE manufactures typically have 50-100 devices on web sites


 

TE factories set up around high product mix


 

Why so many products? 


 

Scalability –

 

Range of products needed for varying design inputs


 

Severe performance penalty for operating TE devices “off optimum”

 
conditions



 

New Auto applications


 

One size will not fit all -

 

customization 
will be required



 

Will be able to vary the number of 
devices to help optimize



 

Shouldn’t simply try duplicating existing 
manufacturing processes



 

Will offer more opportunities for limited 
levels of automation trading off capital 
cost vs. low cost Asian labor
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Long Term Reliability Assessment



 

For Bi2

 

Te3

 

cooling devices, methodologies pretty well defined for predicting TEC life


 

Activation energies determined from storage and aging (powered) at various hot side temps


 

Basic endurance testing to assure TE devices are sufficiently rugged


 

All testing is Pre-Design Verification or application specific qualification testing

Typical Test
Long Term Degradation Conditions Notes

High Temp Storage 
(unpowered) 85°, 125°C, 150°C

Inexpensive test: ovens set at various temperatures.  
Determine activation energy. Degradation rates 
generally 2X those of Aging.

Aging (Powered) Imax @ 65, 85, 
125°C Thot

Thot increased to accelerate degradation. Activation 
energy determined.

Endurance Tests

Thermal Shock -55 to +125 C, 500 
cycles

Test is only useful if qualifying TE device mounted to 
CTE mismatched component.  Upper temp generally 
30-50 C above operating temp

 @ Imax 85°C, 
5000 cycles

Peltier cooling creates ~90°C temperature difference 
and thermal stresses TEC

0 - 100°C Cycling, 
50 C Thot reverse polarity heating to cooling cycle 

Power Cycling
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Long Term Reliability Assessment –
 

Power Gen



 

For Power generation, evaluations & predictions become much more

 

complicated


 

Operating temperature range can be an order of magnitude greater

 

than cooling


 

Multiple materials within a device complicates testing


 

All testing is Pre-Design Verification or application specific qualification testing

Test
Long Term Degradation Conditions Issues w/ Power Generation

High Temp Storage 
(unpowered)

150°C, 300°C, 
450°C 

Still a good, inexpensive screening test for single 
stages of TEG.  Can not use for segmented or 
cascade devices (will exceed operating range for 
lower temp materials).

Aging (Powered) Imax @ 65, 85, 
125°C Thot

Impose ΔT or possibly use controlled Peltier heating 
(assuming electromigraion or electron enhanced 
diffusion is not an issue)

Endurance Tests

Thermal Shock  -55 to +500C?, 
100? cycles

Now becomes a useful test due to large TE elements 
and CTE mismatches between elements and 
interconnects but standard shock chambers 
generally limited to 200-225 C.  Manual tests.

Power Cycling  0-450°C?, 5000 
cycles

TEG ΔT ~ 250-300°C. Controlled Peltier heating of 
each individual TEG needed to create ΔT or large 
sink and source.



9/30/09 2009 Thermoelectrics Applications Workshop 16

TE Industry Manufacturing Readiness Assessment

No consensus winning high temp material for PG. 
At least 4 material needed for PG
ZT may be sufficient for product demos and 
introduction –

 

long term improvements necessary
Improvements over bulk Rc values needed for 
both cooling and PG applications
Cooling: can build off existing infrastructure.  PG 
starts from scratch; different process.
Solders well suited for cooling; PG likely to use 
brazing or TLPS processes.
Unproven for PG materials.  Well established for 
traditional Bi2

 

Te3

 

. May change depending on 
higher ZT formulations
Can leverage some off existing production process
Significant need for mechanical properties and 
reliable high temp thermoelectric properties

Technology Readiness  --  --  -- 0  +  + +

TE Material Selection

TE materials ZT

Diffusion Barriers

Material Capacity

Assembly Processes

Long Term Reliability 

Production Capacity

Mechanical Properties
Zonal AC/Heating
Waste Heat Recovery
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Conclusions



 

Zonal AC/Heating and Waste Heat Recovery: lots of work 
needed to make these applications a reality



 

Zonal AC will be able to leverage off existing TE cooling 
infrastructure. 


 

Scalable Bi2

 

Te3

 

alloys are available today


 

Higher ZT cooling materials are still likely to be Bi2

 

Te3

 

based



 

Waste heat recovery faces many additional challenges


 

Still in material research phase –

 

no consensus winning material


 

Higher risk for manufacturers



 

Many opportunities for Government funding to accelerate 
the manufacturing 
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