

Design and Manufacture of Thermoelectrics for Automotive Applications

2009 Thermoelectric Applications Workshop

Marlow Industries, Inc.

Jim Bierschenk 9/30/09

Automotive Thermoelectric Applications

- Current Automotive Applications
 - Car Seats
 - Cup Holders
- Future Automotive Applications
 - Waste heat recovery
 - Zonal Air Conditioning/Heating
- What are the implications of these new applications on TE Manufacturers?
- What factors drive the material selection and design?
- How do we assess reliability?
- Readiness Assessment

Traditional TE Cooling vs. Zonal AC/Heating

Heat Pumped: mW's to 10's W Mostly Single TEC Systems Heat Pumped: low KW's Many, Many TECs per system

9/30/09

2009 Thermoelectrics Applications Workshop

Traditional TE Power Gen vs. Auto Waste Heat Recovery

Power Produced: (<10W) Single TEG per System Co-Generation \rightarrow Not driven by TEG Efficiency 9/30/09 2009 Power Produced: 100's W to KW Many, Many TEGs per system Waste Heat Recovery → Efficiency matters

2009 Thermoelectrics Applications Workshop

High Volume Automotive TE Applications

- Both Zonal AC and Waste heat recovery TE auto applications will require a significant number of TE modules in each vehicle
- Using traditional size and capacity TE devices, it would take:
 - ~100 TECs to produce 2kW cooling system
 - ~50 TEGs to generate 500W for a waste heat recovery system
- Estimated world wide production of TE Devices in 2008: ~25M
- Each year about 50M vehicles are produced
- Entire current production would address only 0.3% of those vehicles
- Given the price volatility, scarcity of Tellurium, clearly for thermoelectrics to have any impact in the automotive industry,

<u>we can't just build more TE modules.</u>

Scalability of TE Devices

Nine commercially available 40 mm square TECs Total $Q_{max} \sim 650 \text{ W}$

Single 40 mm TEC Qmax > 650 W

9/30/09

2009 Thermoelectrics Applications Workshop

Why don't we do more scaling today?

- Many applications today are single TEC applications make it harder to implement smaller devices
 - Voltage constraints
 - Mechanical and thermal constraints
- Crystalline Bi₂Te₃ material formats support only limited scaling
- Fine grain Bi₂Te₃ material formats can be scaled but are not as rugged as crystalline and more costly
- Reducing the size of the TEC lowers efficiency
 - Smaller size → Higher heat flux → higher thermal interface losses, ceramic conduction losses, larger spreading losses

Impact of Scaling and Fewer couples/Device

For waste heat recovery, target: \$0.10/W for raw TE material ⁽¹⁾

- Device costs are driven by the cost of the TE materials
- Will have to do everything we can to minimize TE material

⁽¹⁾Buschmann, G, IAV GmbH, ICT 2009, Freiburg, Germany

How Far Can We Scale Down The TE Devices?

- Auto Applications are driven by low watt density air
 - Zonal AC
 - Cooling volumes of air in the cabin
 - Heat has to be dissipated eventually to air
 - Waste heat recovery
 - extracting heat from high temperature air stream
 - dumping that heat to ambient

TE Device Design – Dictated by Heat Sinking

- Heat sink technology dictates TE device heat flux
- Must have flexibility on TE element thickness to match TE heat flux with heat sink capability
- Must be able to minimize all losses including electrical contact resistance, interconnect losses, etc.

Automotive TE Module Designs

TE module cost will dominate

- Designs will be driven to highest heat flux (shortest elements) that the chosen heat sink technology can support w/o significant spreading and thermal losses
- Need capability to vary material thickness from 0.30 – 1.2 mm to be able to optimize system (performance vs. cost) – raw material formats that can support these thicknesses
- TE devices will have few couples
 - Low voltage output + Many devices = Few couples needed per device and still be able to provide some redundancy w/ series parallel wiring configurations
 - Minimizing TE material losses
- Cooling devices: single stage
- Power generation: both single stage and either segmented or cascade needed.

Marlow 1st Generation PbTe Prototype Devices

Power Generation TE Material Selection

- Selection will not be based solely on ZT
 - Raw material cost and cost to process it into elements
 - Can it be scaled to thicknesses that can optimally match the available heat exchange technology?

TE Assembly

- Existing TE manufactures typically have 50-100 devices on web sites
- TE factories set up around high product mix
- Why so many products?
 - Scalability Range of products needed for varying design inputs
 - Severe performance penalty for operating TE devices "off optimum" conditions
- New Auto applications
 - One size will not fit all customization will be required
 - Will be able to vary the number of devices to help optimize
 - Shouldn't simply try duplicating existing manufacturing processes
 - Will offer more opportunities for limited levels of automation trading off capital cost vs. low cost Asian labor

Long Term Reliability Assessment

- For Bi₂Te₃ cooling devices, methodologies pretty well defined for predicting TEC life
 - Activation energies determined from storage and aging (powered) at various hot side temps
 - Basic endurance testing to assure TE devices are sufficiently rugged
- All testing is Pre-Design Verification or application specific qualification testing

	Typical Test	
Long Term Degradation	Conditions	Notes
High Temp Storage (unpowered)	85°, 125°C, 150°C	Inexpensive test: ovens set at various temperatures. Determine activation energy. Degradation rates generally 2X those of Aging.
Aging (Powered)	lmax @ 65, 85, 125°C Thot	Thot increased to accelerate degradation. Activation energy determined.
Endurance Tests		
Thermal Shock	-55 to +125 C, 500 cycles	Test is only useful if qualifying TE device mounted to CTE mismatched component. Upper temp generally 30-50 C above operating temp
Power Cycling	@ Imax 85°C, 5000 cycles	Peltier cooling creates ~90°C temperature difference and thermal stresses TEC
	0 - 100°C Cycling, 50 C Thot	reverse polarity heating to cooling cycle

Long Term Reliability Assessment – Power Gen

- For Power generation, evaluations & predictions become much more complicated
 - Operating temperature range can be an order of magnitude greater than cooling
 - Multiple materials within a device complicates testing
- All testing is Pre-Design Verification or application specific qualification testing

	Test	
Long Term Degradation	Conditions	Issues w/ Power Generation
High Temp Storage (unpowered)	150°C, 300°C, 450°C	Still a good, inexpensive screening test for single stages of TEG. Can not use for segmented or cascade devices (will exceed operating range for lower temp materials).
Aging (Powered)	lmax @ 65, 85, 125°C Thot	Impose ΔT or possibly use controlled Peltier heating (assuming electromigraion or electron enhanced diffusion is not an issue)
Endurance Tests		
Thermal Shock	-55 to +500C?, 100? cycles	Now becomes a useful test due to large TE elements and CTE mismatches between elements and interconnects but standard shock chambers generally limited to 200-225 C. Manual tests.
Power Cycling	0-450°C?, 5000 cycles	TEG $\Delta T \sim 250-300^{\circ}$ C. Controlled Peltier heating of each individual TEG needed to create ΔT or large sink and source.
9/30/09	2009 Thermoelectrics Applications Workshop	

TE Industry Manufacturing Readiness Assessment

- Zonal AC/Heating and Waste Heat Recovery: lots of work needed to make these applications a reality
- Zonal AC will be able to leverage off existing TE cooling infrastructure.
 - Scalable Bi₂Te₃ alloys are available today
 - Higher ZT cooling materials are still likely to be Bi₂Te₃ based
- Waste heat recovery faces many additional challenges
 - Still in material research phase no consensus winning material
 - Higher risk for manufacturers
- Many opportunities for Government funding to accelerate the manufacturing