### Commercialization of Bulk Thermoelectric Materials for Power Generation Applications

2011 DOE Thermoelectrics Applications Workshop January 3 - 6, 2011 San Diego, CA

> Dmitri Kossakovski, Ph.D. Managing Director, ZT Plus dmitri.kossakovski@ztplus.com







- Update on ZT Plus activities
- Experimental approaches to accelerate bulk materials R&D
- ZT data analysis approaches





### ZT Plus

ZT Plus develops and produces *high* performance thermoelectric materials for efficient energy conversion for mid temperature waste heat recovery and power generation applications.

ZT Plus is a division of Amerigon Inc.





### ZT Plus Genesis

- BSST has been funding internal Materials Research Program since 2006, establishing Emerging Materials Department in 2008.
- In 2009 BSST formed ZT Plus to commercialize improvements in bulk TE material performance demonstrated by Ohio State, Michigan State and Northwestern Universities.
- Formation and funding of ZT Plus was partially made possible by ONR's long term support of academic research, DARPA's targeted research and DOE sponsored vehicle research and development initiatives.
- DOE sponsorship of device-level development has been, and continues to be, of paramount importance for TE market development.





### Material Improvement



Temperature (K)
Enhancement of Thermoelectric Efficiency in PbTe by Distortion of the Electronic Density of States Joseph P. Heremans, et al. Science 321, 554 (2008);

Spinodal Decomposition and Nucleation and Growth as a Means to Bulk Nanostructured Thermoelectrics: Enhanced Performance in Pb<sub>1-x</sub>Sn<sub>x</sub>Te-PbS

John Androulakis,† Chia-Her Lin,† Hun-Jin Kong,‡ Ctirad Uher,‡ Chun-I Wu,§ Timothy Hogan.§ Bruce A. Cook. Thierry Caillat.# Konstantinos M. Paraskevopoulos, E and Mercouri G. Kanatzidis\*, 1.1 J. AM. CHEM. SOC. 2007, 129, 9780-9788





# ZT Plus Capabilities Update



- New facility in operation since Nov. '09
- Proximity to Amerigon/BSST, Caltech and JPL
- 10,000 sq.ft., all operations are in clean room space
- R&D and pilot manufacturing capabilities
- Ingot casting, powder metallurgy
- Metallization
- Materials metrology to 600°C





### ZT Plus Materials

- Currently sampling to select customers: high performance PbTe (no Thallium)
- Ongoing testing: mechanical, thermocycling
- Future plans:
  - PbTe production scale up
  - Pb and Te-free materials







# Technology Commercialization



# Long feedback loops are prohibitive!





# Development Acceleration

- Implement Design of Experiments methodology -> reduces time by shrinking the experimental space.
- 2. Matching throughput of metrology with that of synthesis is a critical enabling feature for shortened information feedback loops.
- 3. Use fast, but not necessarily precise, tools for material screening -> allows to arrive to negative results faster, thereby reducing the bottleneck of slow metrology.
- 4. Track and eliminate sources of variability → results have high robustness and reproducibility.





# Rapid Screening - Scanning Seebeck

### Uniform vs. Non-Uniform Cast Ingots



Measurements take tens of minutes instead of tens of hours. Experimental feedback is drastically reduced.





### Example: Non-Uniform Pressed Coin

-66

-77

-88



Fails 'Gaussian Distribution' Test

Bimodal – Seebeck changes within the ingot

Seebeck (µV/K) **Scanning Seebeck** uncovers process-induced material variation

#### Scanning Seebeck Analysis of remaining ingot







# <u>Example: Uniform SPS Coin</u>







### **Even Faster Screening – Multi-probe Seebeck:** Simultaneous Measurement with 60 Probes



60 voltage probes and 4 thermocouples





# Even Faster Screening – Multi-probe Seebeck: Simultaneous Measurement with 60 Probes



Measurements take tens of minutes instead of tens of hours.







- Not only material development cycle is long, but also device optimization is complex. Simple tools are desirable to compare the benefits of variations of material properties.
- Average ZT is the property that is being used extensively for performance estimates.
- Average ZT is a function of temperature range.











### Convert ZT(T) plot into $\langle ZT \rangle$ ( $\Delta T$ ) contour map



Example: <ZT> between 280 and 430 C is 1.15









Example: <ZT> between 280 and 430 C is 1.15





### Differential <ZT> Plot





Which material is better?

Judging by average <zT> these materials are relatively well matched.





# <ZT> of a Couple

Average P, N pair zT = 
$$\frac{\frac{1}{2} \int_{T_1}^{T_2} \left[ zT(T)_{P-type} + zT(T)_{N-type} \right] dT}{T_2 - T_1}$$





# Ideal Efficiency of a Couple



Assumptions: no parasitic losses; not accounting for material self-compatibility.





### **Conclusions**

- ZT Plus has successfully transitioned advanced PbTe materials from academic laboratories to preproduction sampling; currently gearing up for scaleup.
- Experimental cycle of material development needs to be fast and robust for optimization experiments targeting production-viable materials.
- Careful selection of measurement and analysis tools need to be employed for rapid characterization of TE materials.
- Sore issue universally acceptable metrology of TE materials, especially for power generation applications.





# **Acknowledgments**

- Government support DOE, DARPA, ONR
- OEM and T1 partners BMW, Ford, Faurecia
- Academic partners OSU, Northwestern University
- Colleagues at ZT Plus, BSST and Amerigon



