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Abstract

This project estimates the naturally available and technically
recoverable U.S. wave energy resources, using a 51-month
Wavewatch III hindcast database developed especially for this study
by National Oceanographic and Atmospheric Administration’s
(NOAA’s) National Centers for Environmental Prediction. For total
resource estimation, wave power density in terms of kilowatts per
meter is aggregated across a unit diameter circle. This approach is
tully consistent with accepted global practice and includes the
resource made available by the lateral transfer of wave energy along
wave crests, which enables wave diffraction to substantially
reestablish wave power densities within a few kilometers of a linear
array, even for fixed terminator devices.

The total available wave energy resource along the U.S. continental
shelf edge, based on accumulating unit circle wave power densities, is
estimated to be 2,640 TWh/yr, broken down as follows: 590
TWh/yr for the West Coast, 240 TWh/yr for the East Coast, 80
TWh/yr for the Gulf of Mexico, 1570 TWh/yr for Alaska, 130
TWh/yr for Hawaii, and 30 TWh/yr for Puerto Rico. The total
recoverable wave energy resource, as constrained by an array capacity
packing density of 15 megawatts per kilometer of coastline, with a
100-fold operating range between threshold and maximum operating
conditions in terms of input wave power density available to such
arrays, yields a total recoverable resource along the U.S. continental
shelf edge of 1,170 TWh/yr, broken down as follows: 250 TWh/yr
for the West Coast, 160 TWh/yr for the East Coast, 60 TWh/yr for
the Gulf of Mexico, 620 TWh/yr for Alaska, 80 TWh/yr for Hawaii,
and 20 TWh/yr for Puerto Rico.

Keywords
Available wave energy resource
Recoverable wave energy resource

Wave power density
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Executive

Summary

This report describes the analysis and results of a rigorous assessment
of the United States ocean wave energy resource. Project partners
were the Electric Power Research Institute (EPRI), the Virginia
Tech Advanced Research Institute (VT-ARI), and the National
Renewable Energy Laboratory (NREL). VT-ARI developed the
methodologies for estimating the naturally available and technically
recoverable resource, using a 51-month Wavewatch III hindcast
database developed especially for this study by NOAA’s National
Centers for Environmental Prediction. NREL validated the
assessment by comparing Wavewatch III hindcast results with wave
measurements covering the same time period. NREL also
performed a “typicalness” study to determine how well the 51-month
period of the Wavewatch III hindcast represented the longer-term
wave climate.

The project team encountered a surprisingly wide variety of
interpretations of wave energy resource terminology among peer
reviews of our study, which include the project’s own Expert Group
and User Group, and an outside Marine and Hydrokinetic Energy
Technology Assessment Committee, facilitated by the National
Research Council with funding support from the U.S. Department
of Energy.

Global practice, as exemplified by wave energy atlases and resource
assessments published for Canada, Ireland, the United Kingdom, the
European Union, Australia, and a recent overview of all major coastal
regions have used “wave power density” in terms of kilowatts per
meter of a unit diameter circle to aggregate the total available wave
energy resource for a given nation or coastal region. Such a unit-
circle approach is not only consistent with accepted global practice,
but also more accurately indicates the resource made available by
lateral transfer of wave energy along the crests of harmonic
components in a multi-directional random seaway, which enables
wave diffraction to substantially re-establish wave power densities
within a few kilometers of a linear array, even for fixed terminator
devices.

Considering the mooring depth range now being considered by most
oftshore wave energy developers, refraction of long-traveled swell will
align most of the directional wave energy flux normal to the long
dimension of a buoy array. The only components of flux that would
be aligned normal to the array’s short dimension are very likely to be
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wind driven seas with large directional spreading, which more
quickly re-establish themselves in the lee of an array. Considering
also that point absorbers and attenuators also transmit and radiate
substantial amounts of wave energy, we conclude that wave power
density rather than normally-directed wave energy flux more closely
represents the energy resource available to a linear array of wave
energy conversion devices along an offshore depth contour or
jurisdictional boundary.

To quantify the effect of using the more restrictive definition of wave
energy resources by aggregating only the directional wave energy flux
normal to a linear feature, we calculated the full 51-month
directional flux distribution for each of the 24 Wavewatch 111
directional sectors for 17 National Data Buoy Center (NDBC) full-
directional-hindcast stations in four regions that represent the variety
of energetic US wave climates: Hawaii (3 stations), Pacific
Northwest (6 stations), Central California (4 stations), and Mid-
Atlantic (4 stations).

In the Pacific Northwest and Central California, normally-directed
wave energy flux generally accounts for 80%-90% of the unit circle
wave power density. The Hawaii region experiences a greater variety
of orientations and prevailing wave directions than the US mainland
West Coast, such that normally-directed wave energy flux across
unsheltered Hawaiian island shelves accounts for 70-80% of unit
circle wave power density. The Mid-Atlantic is characterized by
substantial amounts of wave energy arriving from the north, such
that directional flux normal to east-facing depth contours is only 60-
65% of the unit circle wave power density near the shelf edge. At
inner shelf stations only a few tens of kilometers from the coast,
where wave energy arrays would be within economical power
transmission distance to shore, wave refraction generally increases the
normally-directed flux to 65-75% of unit circle wave power density.
There are short stretches of coastline in both the Pacific and Atlantic
regions where the depth contours face in a more southerly direction,
reducing the normally directed flux by another 5-10%. These
stretches typically are sheltered by headlands or capes and so tend to
have a lower available wave power density.

The average annual and 12 monthly available wave power densities
(kilowatts per meter of wave crest width across a unit diameter circle)
was estimated at over 42,000 grid points in the U.S. coastal
Wavewatch III 4-minute grid, mapped out to a distance of 50
nautical miles from shore, which is the limit out to which NREL has
mapped the offshore wind power density.
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The total available wave energy resource along the outer continental
shelf (notional 200 m depth contour) is presented in the table below,
which is broken down by each major coastal region. These results
are compared with an early preliminary estimate made by EPRI
during its first offshore wave energy conversion feasibility study in
2004.

Table ES-1
Total Available Wave Energy Resource Breakdown by Region

West Coast 440 TWh/yr 590 TWh/yr (34% greater)
(WA,OR,CA)
East Coast 110 TWh/yr 200 TWh/yr (82% greater)
(ME thru NC)
East Coast NOT ESTIMATED 40 TWh/yr
(SC thru FL)
Gulf of Mexico NOT ESTIMATED 80 TWh/yr
Alaska 1,250 TWh/yr 1,360 TWh/yr ( 9% greater)
(Pacific Ocean)
Alaska NOT ESTIMATED 210 TWh/yr
(Bering Sea)
Hawaii 300 TWh/yr 130 TWh/yr (not comparable **)
Puerto Rico NOT ESTIMATED 30 TWh/yr
TOTAL 2,100 TWh/yr 2,640 TWh/yr (26% greater)

* Rounded to nearest 10 TWh/yr for consistent comparison with EPRI 2004
estimate.

** EPRI’s 2004 estimate for Hawaii was along the northern boundary of the U.S.
EEZ, as far west as the Midway Islands. The present estimate extends only as far
west as Kauai, and encompassed the entire islands (not just their northern

exposures).

The increases in the current study as compared with the preliminary
2004 estimate are largely because that estimate was intentionally
conservative, being based on a survey of selected NDBC buoy
measurements, which EPRI thought to be representative but which
did not cover the full range of coastal exposures and sheltering by
shoreline features and islands. The increase is markedly greater for
the East Coast than the West Coast and Alaska, because the 2004
EPRI estimates were rounded to the nearest 5 kW per m, and such
rounding has a much greater effect for the lower wave power
densities of the East Coast.
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To estimate the recoverable resource, we have assumed three array
capacity packing densities as input parameters: 10 MW, 15 MW,
and 20 MW per kilometer, with the two lower values bracketing the
current state of technology, and the upper value representing an
achievable improvement. For each packing density, we estimated
recoverable wave energy as a function of device maximum operating
condition (MOC) for different device threshold operating conditions
(TOC:s), constraining the device operational range to a 100-fold
difference between TOC and MOC in terms of wave power density,
which is consistent with the operating range of proven offshore wind
turbines. Note that the greater the array capacity packing density,
the lower the device MOC can be and still recover the same amount
of available wave energy.

The total recoverable wave energy resource is presented in the
remaining three tables, which each represents a different assumed
packing density (10, 15, and 20 MW per km, respectively), broken
down by major coastal region. The optimal device operating range is
characterized for each region by listing the optimal TOC-MOC

combination.

Table ES-2
Total Recoverable Wave Energy Resource Breakdown by Region* for
Capacity Packing Density of 10 MW per km and Regionally Optimal
TOC-MOC

West Coast 31% 37%
(WA,OR,CA)
East Coast 57% 70% 2 200
(ME thru NC)
East Coast 67% 78% 1 100
(SC thru FL)
Gulf of Mexico 68% 71% 1 100
Alaska 29% 46% 3 300
(Pacific Ocean)
Alaska 40% 50% 3 300
(Bering Seaq)
Hawaii 54% 56% 2 200
Puerto Rico 67% 74% 1 100

* Given as percentage of available resource; multiply by values in Table ES-1 to
obtain TWh/year.



Table ES-3

Total Recoverable Wave Energy Resource Breakdown by Region* for
Capacity Packing Density of 15 MW per km and Regionally Optimal
TOC-MOC

West Coast (WA,OR,CA) 42% 48%
East Coast (ME thru NC) 65% 81% 2 200
East Coast (SC thru FL) 76% 87% 1 100
Gulf of Mexico 77% 79% 1 100
Alaska (Pacific Ocean) 39% 52% 3 300
Alaska (Bering Sea) 49% 59% 3 300
Hawaii 64% 56% 2 200
Puerto Rico 76% 83% 1 100

* Given as Percentage of Available Resource; Multiply by Values in Table ES-1 to
Obtain TWh/Year.

Table ES-4
Total Recoverable Wave Energy Resource Breakdown by Region* for
Capacity Packing Density of 20 MW per km and Regionally Optimal
TOC-MOC

West Coast (WA,OR,CA) 50% 55% 300
East Coast (ME thru NC) 73% 88% 2 200
East Coast (SC thru FL) 82% 93% 1 100
Gulf of Mexico 84% 85% 1 100
Alaska (Pacific Ocean) 46% 59% 3 300
Alaska (Bering Sea) 56% 65% 3 300
Hawaii 72% 73% 2 200

Puerto Rico 83% 89% 1 100

* Given as Percentage of Available Resource; Multiply by Values in Table ES-1 to
Obtain TWh/Year.
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The total recoverable wave energy resource is constrained primarily
by the capacity packing density of device arrays, which for today’s
technology is assumed to be limited to 15 megawatts per kilometer of
coastline. For devices with a 100-fold operating range between
threshold and maximum operating conditions in terms of input wave
power density available to such arrays, the total recoverable wave
energy resource along the US outer continental shelf is estimated to

be 1,170 TWh/yr, broken down as follows: 250 TWh/yr for the

West Coast, 160 TWh/yr for the East Coast, 60 TWh/yr for the
Gulf of Mexico, 620 TWh/yr for Alaska, 80 TWh/yr for Hawaii,
and 20 TWh/yr for Puerto Rico.

Because wave energy device arrays act like high-pass filters, different
coastal regions are more uniform in their technically recoverable
resources than in their naturally available resources. Arrays are
unable to absorb more wave energy than their capacity packing
density permits, and this imposes a greater constraint on the
technically recoverable resource in high-wave-energy regions such as
Alaska and the West Coast, where available wave power densities
greatly exceed realistic array capacity packing densities. In lower
energy areas such as the East Coast, array packing densities can
exceed available wave power densities, enabling them to recover a
greater percentage of the available resource, but also giving them a
much lower capacity factor, greatly decreasing their economic
viability at such high packing densities.

Selected results of the project are displayed on the National
Renewable Energy Laboratory’s Renewable Energy Atlas. Mean
annual wave power density (kW/m), significant wave height (m),
wave energy period (s), and wave hindcast direction, as well as mean
values and wave hindcast direction for each calendar month, can be
displayed in map format. Numerical values can also be accessed for
each map element.
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Section 1: Introduction

This report describes the analysis and results of a rigorous assessment of the
United States ocean wave energy resource. Project partners were the Electric
Power Research Institute (EPRI), the Virginia Tech Advanced Research
Institute (VT-ARI), and the National Renewable Energy Laboratory (NREL).
VT-ARI developed the methodologies for estimating the naturally available and
technically recoverable resource, using a 51-month Wavewatch III hindcast
database developed especially for this study by NOAA’s National Centers for
Environmental Prediction. NREL validated the assessment by comparing
Wavewatch III hindcast results with wave measurements covering the same time
period. NREL also performed a “typicalness” study to determine how well the
51-month period of the Wavewatch III hindcast represented the longer-term
wave climate.

The remainder of this report consists of the following chapters and appendices:
Chapter 2 — Wave Energy Resource Definitions

Chapter 3 — Methodology for Estimating Available Wave Energy Resource
Chapter 4 — Results for Available Wave Energy Resource

Chapter 5 — Methodology for Estimating Recoverable Wave Energy Resource
Chapter 6 — Results for Recoverable Wave Energy Resource

Chapter 7 — Conclusions and Recommendations

Chapter 8 — References Cited

Appendix A: Terminology and Equations

Appendix B: Calibration of Gamma Spectrum Width and Peakedness
Parameters and Example Reconstruction of Full Spectra from NOAA Hindcast
Sea State Parameters

Appendix C: NDBC Measurement Stations and NOAA Full Hindcast Stations
Appendix D: Validation Results

Appendix E: Results of Typicality Assessment

Appendix F: Technically Recoverable Resource Charts
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Section 2: Wave Energy Resource
Definitions

2.1 Background

The project team has encountered a surprisingly wide variety of interpretations of
wave energy resource terminology among peer reviews of our study, which
include the project’s own Expert Group and User Group, and reviews by the
National Research Council, Marine and Hydrokinetic Energy Technology
Assessment Committee, facilitated with funding support from the U.S.
Department of Energy. Careful consideration of comments received from these
many reviewers has suggested that rigorous and precise definition of commonly
used wave energy resource terms will aid in the subsequent understanding of our
methodologies and application of our results.

Each of the following terms has a specific meaning as used in our study:

»  Wave power density of the sea surface, in kilowatts per meter (kW/m) of
wave crest width

*  Wave energy flux, in kW/m across a linear feature such as a bathymetric
contour

* Available wave energy resource along a linear feature, in billions of kilowatt-
hours per year, which is equivalent to terawatt-hours per year (TWh/yr)

= Recoverable wave energy resource along a linear feature, in TWh/yr
Each of the above terms is defined in the four remaining sections of this chapter.

Wave energy atlases and resource assessments have been published for Canada
(Cornett 2006), Ireland (ESBI 2005), the United Kingdom (ABP MER 2004),
the European Union (Pontes 1998), Australia (Hughes and Heap 2010), and
most recently, the major coastal regions of the world (Merk ez a/. 2010). All of
these have mapped what our report terms “wave power density” in terms of
kilowatts per meter (or its equivalent, megawatts per kilometer), and all have
used this quantity to estimate the total available wave energy resource.

Because of its wide usage as cited above, this chapter begins with definition of

«, . » . . . .

wave power density” as applied to an increasingly complex sea state. This term
is easy to understand for a field of regular waves having a single frequency and
infinitely wide crests, but its meaning is less clear where multiple wave trains are
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traveling in different mean directions, each described by its own frequency
spectrum and directional spreading function.

2.2 Wave Power Density of the Sea Surface

The quantity to be mapped by our project is wave power density, which is
commonly expressed in numerically equivalent units of kilowatts per meter or
megawatts per kilometer. In this section, we develop the definition of “wave
power density” first for simple, harmonic or regular waves. We next describe the
superposition of such waves, all moving in the same direction, which creates an
irregular wave train whose crests are infinite in extent. Such long-crested waves
are not a natural phenomenon, but represent an intermediate step towards
synthesizing the short-crested sea state, where waves appear as a confusion of
hills and hollows moving in several directions at once, which we describe in the
third part of this section.

Regular Waves

The wave power density of a simple, harmonic wave is the rate at which the
combined kinetic and potential energy of the wave is transferred through a
vertical plane of unit width, oriented perpendicular to the direction of wave travel
and extending down from the water surface.

Half of a wave’s energy is stored in potential form, associated with the vertical
rise and fall of the water surface from its still-water, undisturbed condition. The
other half is expressed as kinetic energy, associated with the orbital motion of
water particles beneath the water surface. Because sub-surface water particle
orbits are closed, kinetic energy does not travel with the wave phase, and only the
wave’s potential energy travels at phase speed (i.e., speed of an individual wave
crest), which is simply calculated as the wavelength divided by the wave period.

Consider a group of regular waves traveling into previously undisturbed water
(Figure 2-1). Only the potential energy of the leading wave travels at phase
speed. There is a reduction in wave height as half of this potential energy is
converted to kinetic energy when the sub-surface water particles of the previously
undisturbed water, which were at rest, are set into motion. The remaining half of
the potential energy is available to travel the next wavelength, 